
ECSQL

A Domain-Specific Language for
Manipulating Entity Component

Systems

Aidan Hall

Department of Computer Science

University of Warwick

Supervised by Alex Dixon

Year of Study: 2024

29th April 2024

Abstract

In this project, we produced a framework for building video games that al-

lows the developer to interactively manipulate the state of a game, like a

database. We achieved this by creating a simple scripting language, with

a query language embedded within it, called ECSQL. We used the Entity

Component System design pattern to represent the state of games in a stan-

dardised, database-like way. This makes it possible for ECSQL code to apply

arbitrary, programmatic transformations to all aspects of any game built us-

ing our framework, at run-time.

We created a small game using the framework, which allowed us to demon-

strate the capabilities of ECSQL. These included the potential to implement

interactive game development tools in just a few lines of code.

The end product is a sufficient proof-of-concept, and could be the basis

for be a compelling alternative to game engines like Unity, although little

effort was made to optimise its performance.

Acknowledgements

I would like to thank my supervisor, Alex Dixon, for helping to guide the

direction of the project.

Keywords

C, Lisp, Video Games, ECS (Entity Component Systems), DSL (Domain-

Specific Languages), Databases.

1

Contents

1 Introduction 6

2 Background and Research 9

2.1 Entity Component Systems 9

2.1.1 Definitions of Terms 10

2.1.2 Existing ECS Implementations 12

2.1.3 Feature Breakdown . 16

2.1.4 Entity Relationships 17

2.2 Domain-Specific Languages 18

2.3 Lisp . 19

2.3.1 Macros . 20

2.3.2 Association Lists . 21

2.3.3 Lisp Dialects . 22

2.4 Potential Applications . 23

2.4.1 Graphical User Interfaces 23

2.4.2 Console Commands . 25

2.5 ECS Computational Models 25

3 Objectives 26

3.1 Query Language . 26

2

3.2 System Architecture . 27

3.3 Requirements Analysis . 28

4 Methodology 33

4.1 Research . 33

4.2 Design . 34

4.3 Development . 34

4.4 Testing . 36

4.5 Tools . 36

5 Design 38

5.1 Entities . 38

5.2 Components . 40

5.2.1 Component Representation 40

5.2.2 Component Storage . 42

5.3 Systems . 44

5.3.1 System Scheduling . 45

5.3.2 Entity Names . 45

5.4 Lisp . 46

5.4.1 Type System . 46

5.4.2 Structs . 48

5.4.3 Scopes and Closures 50

5.4.4 Macros . 50

5.4.5 REPL . 50

5.4.6 Error Handling . 51

5.4.7 Syntax and Short-Hand Forms 51

5.4.8 Core Language and Special Forms 51

5.4.9 Macro System . 53

3

5.4.10 Primitive Functions . 54

5.4.11 ECS Lisp APIs . 55

5.5 Domain-Specific Languages 56

5.5.1 ECSQL Query Language 57

5.5.2 Entity Initialisation . 60

5.5.3 Primitive Argument Type Specifications 61

5.6 Asynchronous REPL . 62

6 Implementation 63

6.1 Entities . 64

6.1.1 Entity Names . 65

6.2 Components . 66

6.2.1 Adding and Removing Components 67

6.2.2 Component-Column Mapping 67

6.2.3 Bootstrapping the Storage Component 68

6.2.4 Lisp Components . 69

6.3 Queries & Systems . 70

6.3.1 Query Compilation . 70

6.3.2 Query Execution . 71

6.3.3 Systems . 73

6.4 Lisp . 74

6.4.1 Object Representation 75

6.4.2 Parser and Printer . 80

6.4.3 Memory and Addressing 80

6.4.4 Error Handling . 82

6.4.5 Scopes . 82

6.4.6 Evaluation . 83

6.4.7 Macro Expansion . 85

4

6.4.8 Documentation Strings 85

7 Project Management 87

7.1 Project Progress . 87

7.2 Risk Management . 90

8 Results & Evaluation 92

8.1 Example Application . 92

8.1.1 C Systems . 93

8.1.2 Scene . 93

8.1.3 Queries & Lisp Systems 95

8.2 Possible Use-Cases . 98

8.3 Requirements Evaluation . 100

9 Conclusions 105

9.1 Further Work . 106

9.1.1 Lisp Implementation 106

9.1.2 Entity Relations . 107

9.2 Self-Assessment . 108

Bibliography 109

A Lisp Primitives 115

5

Chapter 1

Introduction

In the field of game development, it is common to use large, pre-existing

frameworks called engines to build games. Engines like Unity [41] & Un-

real [9] implement low-level functionality such as rendering pipelines and

scene hierarchy management. They also provide development environment

tools, including level editors and parameter viewers, that make the game

development experience quicker and easier (see Figure 1.1). Most Engines

adopt an Object Oriented Programming (OOP) model, at least for user code.

An alternative approach that has gained some popularity in game devel-

opment recently is the Data-Oriented Design process [6]. Instead of building

class hierarchies in an attempt to create a model of the world, Data-Oriented

programs are written with a focus on what the actual data is, and how it is

transformed [1], with the aim of removing unnecessary complexity.

One prominent Data-Oriented design pattern is the Entity Component

System (ECS) [22]. It serves as a concrete alternative to OOP as a frame-

work for building games, while remaining a sufficiently simple concept that

there are numerous ECS library implementations, in a wide variety of lan-

guages [40, 29, 19]. There are even more ambitious projects such as Bevy [2],

6

Figure 1.1: The Unity editor displaying the properties of some terrain, a
scene hierarchy, and a preview of the scene.

an ECS-based game engine.

The main weakness of these libraries is that they lack most of the helpful

interactive features that engines provide. Even Bevy lacks a scene editor at

the time of writing. For most small game development teams, it would be

infeasible to build all the development tooling of an engine, so they must

either go without if they want to use an ECS library, or turn back to using

game engines.

Our goal with this project was to produce a single general-purpose tool

that could introduce a more fluid, interactive game development experience

to developers using ECS libraries, and replicate some of the functionality of

game engine editors, without the cost and complexity of implementing their

many specialised tools individually.

To achieve this, we implemented a Domain-Specific Language (DSL), on

top of a more general-purpose scripting language, that would provide a con-

cise way to express queries about and transformations of the state of an

7

ECS-based game, in a manner similar to SQL. We refer to this DSL as EC-

SQL (the Entity Component System Query Language).

We believe our system would be most useful to small teams, or solo de-

velopers, who want to make games using an ECS library, but don’t have the

resources to build their own engine or tools. The expressive power of ECSQL

would allow them to do this, because it would reduce the time required to

implement each feature.

Furthermore, we believe any game developer could benefit from a system

with the capabilities of the ECSQL language, because it provides such a

novel way of interacting with and developing a game. It could even act as

an effective complement to the traditional tools in large engines like Unity.

We discuss potential use-cases of the ECSQL system in more detail in

section 8.2.

8

Chapter 2

Background and Research

In order to fully appreciate the motivation for our project, on even the fun-

damental level of its design, some context is required. This includes a basic

background explanation of Entity Component Systems and Lisp, which we

will provide in this chapter. We also discuss the findings of our initial re-

search, including some potential applications of a system like ECSQL, and

different computational models we considered before settling on creating a

query language.

2.1 Entity Component Systems

The ECS design pattern is a way of structuring programs, most commonly

used in video games, where objects are represented as abstract Entities.

There is a lot of terminology required to discuss Entity Component Systems,

so we first define these terms, then evaluate some existing solutions.

9

2.1.1 Definitions of Terms

Several of the important concepts in ECS design have names with general

meanings, that are used to refer to unrelated concepts in other contexts.

Throughout this project, we will capitalise the terms when referring to their

specific meanings within the context of ECS.

Most of these definitions are based on those in the Unity Entities package

documentation [39, Entity Component System concepts]. Other sources are

cited where relevant.

Entity Something discrete in a game World, with its own set of data. They

are represented by a unique ID. Each Entity has a set of Components.

Component A single logical piece of information about an Entity, such as

health or position, represented as plain data.

Archetype A unique identifier for all the Entities in a World that have the

same unique combination of Component types. It is common to store

Component data for Entities with the same Archetype together [39,

29].

System Functions that perform some operation for each Entity matched by

a Query. It is possible to represent Systems as Entities [29, Systems].

Query A way of specifying conditions an Entity must meet for a System

to operate on it, and what Components of each Entity the System

will use. A basic approach would be to specify which Components an

Entity must have, and which ones it must not have. More sophisticated

implementations can aggregate Component data from multiple related

Entities into one entry in a Query’s results [29, Queries].

10

Relationship A special type of Component used to express how Entities

should interact [29, Relationships]. For example, A ChildOf Relation-

ship could be used to represent a scene hierarchy.

Tag A Component containing no data. It conveys information about an

Entity only by whether or not it is present [29, Queries].

World A collection of Entities, within which each Entity’s ID is unique.

They are analogous to scenes in general game engine terminology. A

System also exists in a specific World, and operates on the Entities

within it.

Dependencies A mechanism to control System scheduling. Each System

specifies which Components it reads and writes, and possibly some

other constraints, to prevent Systems from interfering with one-another

while running.

Phases/Pipelines An alternative approach to controlling System schedul-

ing [29, Systems]. A Pipeline is divided into an explicitly-ordered set

of Phases. Each System has a Phase Component, that specifies which

Phase it should run in. In the strictest form, there is the assump-

tion that no Component type is read from and written to in the same

Phase by different Systems. There can be multiple Pipelines, and they

typically run at regular intervals, such as once per frame.

Generation A number included as part of an Entity’s ID. It is incremented

every time an ID is reused (after the last Entity with that ID was

destroyed) [30]. This ensures persistent references to Entities are always

valid.

11

Figure 2.1: Flecs Explorer

2.1.2 Existing ECS Implementations

Since the primary goal of this project is to produce a new way of manipulating

Entity Component Systems, we must review existing solutions to identify any

gaps in the existing provision. We took the code examples in this section from

the official documentation or tutorials for each solution.

Flecs

Flecs [29] was created by Sander Mertens, and is written in C. It appears to be

the most conceptually advanced among the ECS implementations discussed

here. Mertens has written numerous blog posts on advanced ECS topics,

notably including Entity Relationships (see subsection 2.1.4), a distinctive

feature of Flecs [24, 27, 30]. Another notable feature of Flecs is that it treats

Component types as Entities, which makes it possible to create new ones at

run-time.

Flecs has a DSL for creating Queries, Entities, and Component types.

This integrates with the Entity Relationships system, allowing it to express

12

highly complex Queries, that can even select Components of multiple Entities

at once, concisely. A Query in the DSL can be mapped almost directly to

calls to the C API. Listing 2.2 shows a Query that matches Entities that

have Position, but neither Velocity nor Speed.

The DSL is mainly restricted to selecting sets of Entities. It does not

support System definitions, or Queries that apply a transformation.

Flecs has a web UI that allows interactive inspection of a Flecs World at

runtime, including a tabular view of the results of Queries (see Figure 2.1).

Listing 2.1: How Systems are defined using the C++ API for Flecs.

flecs:: system sys = world

.system <Position , const Velocity >("Move")

.each ([](Position& p, const Velocity &v) {

// each() runs the function on each Entity.

p.x += v.x;

p.y += v.y;

});

Listing 2.2: A Query in the Flecs DSL.

Position , !{ Velocity || Speed }

Unity DOTS

Unity’s Data-Oriented Technology Stack is “a combination of technologies

and packages that delivers a data-oriented design approach to building games

in Unity” [40]. The ECS [39] is part of it, alongside a JIT C# compiler and a

parallel job scheduling system. The job scheduling system uses Dependencies

to control the order of execution.

The ECS integrates with Unity’s editor UI, with a similar interface to

that of Unity’s normal GameObjects (see Figure 2.2). In the code, there are

IComponentData and ISystem interfaces, that Component and System types

must implement, respectively. There is a Query builder class, and there are

13

UI elements for designing Queries.

The documentation includes high-quality explanations of basic ECS con-

cepts, as well as more advanced ones, notably including Archetypes [39].

Figure 2.2: A comparison of the property editor user interfaces for GameOb-
jects and ECS data in Unity (source: https://unity.com/ecs).

cl-fast-ecs

This is an ECS written purely in Common Lisp [19]. We have included it

as an example that is, at least superficially, quite similar to ECSQL. Since

all Entities, Components and Systems are defined in Lisp, they can all be

redefined at run-time.

Listing 2.4 demonstrates its ecs:make-object function, that implements

a tiny DSL of sorts for creating new Entities with certain Component values.

As we discuss in section 2.3, Lisp is especially well-suited to creating embedded

DSLs (see section 2.2), that integrate with code in the host language. For

example, the code in Listing 2.3 uses a Lisp expression within the DSL code

to assign the object a random position, which only works because the DSL

14

https://unity.com/ecs

is embedded.

Listing 2.3: A cl-fast-ecs system.

(ecs:define-system move

(: components-ro (speed)

:components-rw (position)

:arguments ((:dt single-float)))

(incf position-x (* dt speed-x))

(incf position-y (* dt speed-y)))

Listing 2.4: An application of cl-fast-ecs’s ecs:make-object function,

which provides a concise way of creating an Entity with a given set of Com-

ponents.

(dotimes (_ 1000)

(ecs:make-object

`((: position
:x ,(float (random +window-width +))

:y ,(float (random +window-height +)))

(: speed :x ,(- (random 100.0) 50.0)

:y ,(- (random 100.0) 50.0)))))

Bevy ECS

Bevy [2] is a game engine written in Rust, with an ECS at its core. Com-

ponents are implemented as Rust structs that implement the Component

trait. Systems are implemented as Rust functions with a Query template as

an argument. It supports Systems that iterate over the relevant Entities in

parallel.

Listing 2.5 is an example of a Bevy System. It takes a single argument,

generated by the Query template. The With clause requires Entities to have

the Person Component, without loading its data, which is useful for refer-

encing Tag Components, which have no data. Since Queries are implemented

as Rust templates/macros, there is no way to write new ones at run-time.

15

Listing 2.5: A Bevy System.

fn greet_people(query: Query <&Name , With <Person >>) {

for name in &query {

println !(" hello {}!", name .0);

}

}

2.1.3 Feature Breakdown

Now we have gotten an overview of some existing solutions, we can evaluate

their feature-sets to determine where ECSQL fits in. We have chosen to

compare them based on the following features, since they effectively illustrate

the gap that ECSQL fills:

Query DSL A way of expressing an ECS Query outside the implementation

language. Allows Queries to be written and executed at run-time.

Scripting Allows gameplay code to be written written in a high-level easy-

to-use language.

Native API Provides a mechanism to interact with the ECS, in particular

to define Systems, in a native/systems language such as C or Rust.

Run-time Definitions Allows all ECS features, including Entities, Com-

ponents and Systems, to be defined and modified at run-time.

Data Manipulation Language (DML) Provides a run-time interface to

define and run one-off commands that can apply arbitrary, bulk trans-

formations to many Entities at once.

Table 2.1 provides a breakdown of each of the ECS implementations we

have discussed, and ECSQL, in terms of whether or not they implement

16

Solution Query DSL Scripting Native API Run-time Definitions DML
Unity ECS × ✓ × × ×
Bevy × × ✓ × ×
cl-fast-ecs × ✓ × ✓ ×
Flecs ✓ × ✓ × ×
ECSQL ✓ ✓ ✓ ✓ ✓

Table 2.1: Feature breakdown of various ECS solutions, including ECSQL.

each of the above features. With ECSQL, we aim to combine the run-time

interactivity of cl-fast-ecs with the expressive power of Flecs’ Query DSL.

2.1.4 Entity Relationships

Entity Relationships are special Component types that can express a rela-

tionship between two Entities. The basic idea is to make it possible to add

a pair of Entities/Components as a single Component. For example, the

Relationship (A, B), when added to an Entity, would represent that Entity

having Relationship A with Entity B. Mertens [27] explains how this simple

concept can be used to represent a variety of constructs, including:

Scene Hierarchies Add Relationship (ChildOf, Parent) to each child

Entity.

Inventory Contents Add Relationship (Holds, Apple), with value n, to

an Entity to represent it having n apples in its inventory. Notably,

(Holds, Orange) would be a distinct Component type.

State Machines Some Relationships in Flecs (such as ChildOf) are ex-

clusive, so each Entity can have that Relationship with at most one

other Entity. If an Entity can have one of a finite set of states, such

as {standing, running, jumping}, these could be represented with an

exclusive State Relation: (State, Standing), (State, Running),

17

(State, Jumping).

One especially powerful feature of Flecs, enabled by Relationships, is the

ability to use Joins in Queries. For example, the following Flecs Query would

get the position of each Entity, and its parent, in a scene hierarchy:

Position($this), (ChildOf, $Parent), Position($Parent)

This is just one of the features that makes the implementation of Rela-

tionships in Flecs so complex [24].

2.2 Domain-Specific Languages

It is common for design patterns to be implemented as built-in features of

new programming languages. Notable examples include procedure calls and

OOP. Norvig [33] describes 3 levels at which patterns may be implemented

in a language:

Informal Written by hand each time, implemented as prose.

Formal Implemented in the language, commonly with macros.

Invisible A fundamental part of the language, used implicitly.

Formal pattern implementations provide a more concise, expressive way of

using a pattern than informal ones. This is because they save the programmer

from thinking about the (often highly repetitive) code required to apply

a pattern in a given context. They achieve this by generating that code

automatically, at compile time.

A Domain-Specific Language provides a formal way to express a set of

operations, constraints, or ideas, concerning a specific application. We can

18

think of a DSL as a set of complex design patterns, with a compiler or

interpreter as the implementation. When a Formal implementation of a DSL

compiles DSL code to code in the host language, it is said to be an embedded

DSL. Embedded DSL code can directly interact with code written in the host

language [14, p. 254]. For example, it could access variable definitions that

are in scope in the surrounding host language code.

Flecs’ Query DSL is not embedded, because C is not powerful enough for

that to be possible. The ECSQL Query language (see subsection 5.5.1) is

compiled, but the output is not Lisp code (see subsection 6.3.1), and has a

separate interpreter implementation, so it is not an Embedded DSL by our

definition. The ecs-add* (see subsection 5.5.2) language can use the result

of evaluating Lisp expressions at run-time (with the expr form), and thus

has to be embedded.

Embedded DSLs are also not to be confused with embedded scripting

languages, such as Lua [17]. These languages typically have an API that

allows function calls between themselves and the host language, but generally

cannot make use of host language constructs. The interface to run scripting

language code from the host language often relies on snippets of scripting

language code stored in strings, which must be parsed and evaluated at run-

time; this is the case for Lua, and the Flecs Query language.

2.3 Lisp

For reasons discussed in section 3.2, we chose to implement a basic Lisp

interpreter as the basis for ECSQL, so we have included some necessary

background information on it.

Listing 2.6: A Lisp function that computes n!.

19

(defun factorial (n)

(if (<= n 1)

1

(* n (factorial (- n 1)))))

Lisp is a dynamically-typed language, that has the familiar set of built-in

data types, with the addition of lists and symbols (e.g. *, defun). Lists are

composed of nodes called cons cells. A cons cell is a pair of two values, the

car and the cdr. In a list, the cars contain the values, and each cdr stores

a reference to the next cons cell in the list, or a null terminator value. Each

element of a list can be any type, including cons cells, so lists can represent

arbitrarily nested expressions. We refer to this as list structure.

We represent lists visually using S-expressions: elements are separated

with spaces, with parentheses as delimiters. A dot in an S-expression indi-

cates that the next value will be the cdr of the last cons cell, so we can

represent a single pair as (car . cdr); the list (a b c) is equivalent to

(a . (b . (c . nil))).

2.3.1 Macros

Lisp code is represented using list structure and symbols (see Listing 2.6), so

it is easy to write Lisp code that generates Lisp code, as shown in Listing 2.7.

Such code is commonly written in the form of Lisp macros.

To greatly over-simplify, Lisp macros are functions that run at compile

time and can generate Lisp code [13, p. 162]. Macros allow programmers to

extend the language using the language. A recurring introductory example is

let (see Listing 2.8), which adds local variable bindings to a Lisp that only

supports lambda function application. For a deep dive into the potential of

Lisp macros, see Graham [14] and Hoyte [16].

Lisp features a quotation operator, '. An expression following this op-

20

erator is not evaluated, so code can treat it as a value. The quasiquote or

backquote operator, `, acts like ', with the additional feature that the un-

quote operator, ,, cancels it out. See Listing 2.7 for an example of how we

can use these when writing macros.

Listing 2.7: A piece of Lisp code that generates a piece of Lisp code.

(cons '+ (list 1 2 (cons '* (cons 3 (cons 4 nil)))))

=> (+ 1 2 (* 3 4))

Listing 2.8: Local variable binding, implemented as a Lisp macro, derived

from our definition in util.lisp.

* (defmacro let (binds . body)

`((lambda ,(mapcar #'car binds)

. ,body)

. ,(mapcar #'cadr binds)))

* (macroexpand-1

'(let ((a 2)) (* a a)))

((lambda (a) (* a a)) 2)

2.3.2 Association Lists

The flexibility of list structure means Lisp programmers can use it to rep-

resent a variety of data structures. One example is the association list [13,

p. 51], which models a key-value map. Each element of the list is a pair,

with the key in the car and the value in the cdr. The standard Lisp func-

tion assoc finds the first element of an association list with a given key (see

Listing 2.9).

Listing 2.9: Association List Example

* (defvar names '((x . 3) (y . 2)))

* (assoc 'x names)

(x . 3)

* (assoc 'z names)

()

21

2.3.3 Lisp Dialects

There are a number of similar languages that are collectively referred to as

dialects of Lisp. Notable examples include Common Lisp [13], Scheme [11]

and Emacs Lisp [10]. They all share the basic traits of code being represented

with S-expressions, and the general semantics of how expressions are evalu-

ated, but there are a number of minor differences that make each distinct.

The most fundamental difference between Common Lisp and Scheme, the

two most prominent dialects, is the way they handle namespaces [35, Ch. 2].

Common Lisp has entirely separate namespaces for functions and variables,

even allowing a function and a variable with the same name to exist in the

same scope. It is referred to as a Lisp-2 because of this (see Listing 2.10).

By contrast, Scheme is referred to as a Lisp-1, because it has a single names-

pace for functions and variables (see Listing 2.11); there is little distinction

between them, to the point that they are defined with the same operators

(let for locals, define for globals).

Listing 2.10: Common Lisp’s separate namespaces.

* (defun b (x)

(* x x))

b

* (let ((b 5))

(b b))

25

Listing 2.11: Scheme’s single namespace.

* (let ((a 5)

(b (lambda (x) (* x x))))

(b a))

25

22

2.4 Potential Applications

We considered a few potential applications that could benefit from an inter-

active ECS manipulation language, before deciding to focus on the Queries

and programmatic transformations of ECSQL.

2.4.1 Graphical User Interfaces

One idea we considered was to use Entity Component Systems to represent

a Graphical User Interface (GUI) within a game.

This idea was explored in great depth in the Polyphony project [36]. Their

approach was to represent widgets as Entities, with properties represented as

Components For example, a button could have Components for its position,

size and text, and to indicate what happens when it is pressed. The actual

widget drawing and interaction is then implemented as Systems that operate

on the set of widget Entities.

Expressing all information about the state of the GUI with Components

is similar to the traditional “retained”1 model of GUI implementation [5],

but comes with a few notable advantages. These advantages are broadly the

same as those of using ECS for the rest of a game: using Components instead

of inheritance makes it simpler to reuse and compose features dynamically,

and centralising computation into Systems can improve performance, and

makes it easier to extend the functionality of the whole GUI at once (e.g. by

creating one new System) [36, § 4].

It is also possible to use an “immediate mode” [5] approach, using draw

calls in Systems to re-build the whole GUI every frame. In an immediate-

mode system, the GUI itself does not have any persistent, internal state.

1Typically Object-Oriented

23

Instead, we can derive its appearance from the state of Entities within the

game world.

For example, we have previously implemented a “health bar” System,

that Queries for Entities with the Position and Health Components, then

draws a health bar above each of them. This GUI feature has no internal

state of its own, and is trivially enabled or disabled by starting or stopping

the System. We have included a possible implementation of such a System in

Listing 2.12. For a similar example in action, see the position labels System

in Listing 8.7.

Listing 2.12: ECSQL code for a Health Bar System.

(ecs-new-system

(Graphics) (and Pos Health) (pos health)

;; Full health bar

(draw-rectangle (- pos #*v2 (10.0 10.0))

#*v2((health-total health) 5)

black)

;; Remaining health bar

(draw-rectangle (- pos #*v2 (10.0 10.0))

#*v2((health-current health) 5)

red))

In a retained GUI system, it might have been necessary to create a health

bar widget for every matching Entity, and copy the position from each Entity

to its corresponding widget each frame.

With a more retained, extensional representation, and a language like

ECSQL, it would be possible to build GUIs interactively, with a similar

experience to Tcl/Tk [38]: the developer could evaluate an expression to

create a new Entity representing a GUI widget, and immediately see it in

the game window.

With a retained, ECS-based GUI, it could also be useful to apply the

flyweight pattern [34, Ch. 3], using a single template Entity for each kind

24

/give Add an item to a player’s inventory.
/gamemode Change a player’s game mode, which determines

what actions they can perform.
/locate Find the nearest in-game structure of a specific type.

Table 2.2: Examples of Minecraft Commands.

of GUI element, with Components holding shared information, such as the

colour and size. A GUI rendering System could read the Component values

for this one Entity, and re-use them for all GUI Entities based on it2

2.4.2 Console Commands

Some games feature a developer console, accessible to the player. Exam-

ples include Minecraft [12] and games built with Valve’s Source engine [42].

These provide a textual interface to issue simple, high-level commands that

change the state or behaviour of the game in some way. We have listed some

examples in Table 2.2.

A Query language like ECSQL would make it possible to implement some

of these commands in a single line of code. As a result, the developer could

create many such commands near-effortlessly. Another approach would be

to give the players direct access to the Query language, but perhaps restrict

the set of Entities and Components they can manipulate, so they can’t com-

pletely break the game.

2.5 ECS Computational Models

2This is a natural use-case for Entity Relationships (see subsection 2.1.4).

25

Chapter 3

Objectives

In this chapter we set out and justify the objectives for the project, and

specify a set of requirements a solution would have to satisfy to meet those

objectives.

3.1 Query Language

The initial motivation for this project was a perceived gap in the provision

of existing ECS solutions. From prior experience, we knew most had only an

inexpressive API in a static, compiled language, with little or no support for

directly interacting with the ECS’s state at run-time (see subsection 2.1.2).

We realised that a domain-specific language could mitigate this problem, by

providing an expressive, interactive interface.

We chose to create a Query language because it maps well semantically

to the structure of an Entity system. Mertens [31] and Martin [23] have

both drawn a link between ECS and relational database systems: Entities

act as primary keys, and a Component type is equivalent to a column in a

database table. Martin [23] claims that “life is more fun if you embrace the

26

dynamicity of the query”, suggesting that thinking of an ECS-based game

like a database affords greater flexibility than would be possible with static

architectures like OOP inheritance hierarchies. Consequently, we believed

that taking this analogy as far as possible and creating a dynamic, run-time

query language could allow for myriad interesting, novel applications.

Furthermore, we believed that such a language could be powerful and

expressive enough to replicate many of the specialised utilities seen in more

advanced game engines, and go beyond their capabilities in certain areas.

For example, a parameter viewer could be implemented simply as a Query to

get the values, and a function call to put them on the screen (see section 8.1).

There would also be a lot of potential value in applying bulk, program-

matic transformations interactively, as seen almost exclusively in database

systems (with languages like SQL). It would be challenging, if not impossible,

to replicate this kind of functionality with specialised utilities, to the same

level of expressivity and generality.

3.2 System Architecture

We can now identify the two primary objectives of this project: creating an

Entity Component System library, and a Query language frontend to it that

could be used at run time.

Since our primary aim was to create a Query DSL optimised for this spe-

cific application, we deemed it necessary to create the language implementa-

tion ourselves, rather than use an existing embedded scripting language such

as Lua. This allowed us to integrate ECS functionality into the language at

a fundamental level, in the type system, for instance (see subsection 5.4.1).

This also gave us complete control over the execution model of the language,

27

allowing us to implement each feature in whatever way we deemed best.

We chose to implement the Query DSL within a basic Lisp implemen-

tation, with macros, in order to maximise the effectiveness of the solution,

relative to the amount of effort we would need to put in. For one thing, we

needed a scripting language to express transformations to apply to Entities

matched by the Query language, and for another, it is fairly straightforward

to create a basic Lisp implementation [8]. Furthermore, Lisp’s macro system

is especially suited to creating advanced embedded languages with a small

amount of code (see section 2.3): there is even precedent for implement-

ing Query languages within Lisp using macros [14, Ch. 19]. We also had

substantial experience writing Lisp, including macros, prior to this project.

We chose to create the ECS ourselves, so we could ensure it would inte-

grate elegantly with the language. For instance, we used Lisp S-expressions

for the internal Query representation, allowing us to easily generate and ma-

nipulate it within Lisp. This made it possible to extend the Query language

without having to modify the implementation in C.

3.3 Requirements Analysis

These are the original requirements we created for the specification. Since we

wrote them, the focus of the project shifted away from performance consid-

erations, and almost entirely towards the capabilities of the language itself.

As a result, some of these requirements are no longer relevant. One no-

table change was that we decided to implement an interpreter rather than a

compiler for ECSQL.

We have prioritised these requirements using the MoSCoW approach,

specifying whether we MUST, SHOULD, COULD or WILL NOT at-

28

tempt to meet each one.

1. Construct an ECS:

(a) Represent Entities with unique, automatically-generated IDs (MUST).

(b) Represent Components as plain struct types (MUST).

(c) Schedule System execution at run-time (MUST): This will allow

the language to manipulate Systems.

(d) Store Components according to Archetypes [39, Archetype con-

cepts] (COULD): This could mean storing Component data for

all Entities with the same Archetype together. This is a perfor-

mance optimisation.

(e) Represent Entity Relationships and Joins, in a similar manner to

Flecs [29] (SHOULD). This would greatly increase the expressive

power of the language.

(f) Allow fast, multi-threaded access to the Entity store (SHOULD):

This would be necessary to enable some of the parallelisation en-

hancements discussed below.

2. Implement a language that can manipulate the state and behaviour of

an ECS-based game, with the following capabilities and features:

(a) Create and delete Entities (MUST).

(b) Add and remove Components of Entities (MUST).

(c) Display and edit the contents of Components (MUST).

(d) Select sets of Entities to apply a transformation to, based on

Queries [29, Queries] and the values of their Component data

(MUST).

29

(e) Start and stop Systems, and list which ones are running (MUST).

(f) Compile programs to LLVM IR (SHOULD): This would poten-

tially yield much greater performance than bytecode, increasing

the range of scenarios where it would be suitable to use the lan-

guage.

(g) Compile programs to bytecode (COULD): A bytecode VM would

probably be slower than native code generated by LLVM, but

may be easier to work with depending on how the implementation

works out.

(h) Define and run Systems and functions (SHOULD): Functions

are a fundamental abstraction mechanism in any language, and

Systems are of similar importance in ECSQL.

(i) Execute commands received asynchronously from a REPL (SHOULD):

This would allow the user to type commands and see results with

the game still running.

(j) Have a terse and ergonomic syntax (SHOULD): Users should be

able to write code in the language quickly and easily, since the

intention is for them to use it as an interactive development tool.

(k) Run Systems and general functions written in the host language

(SHOULD): This would allow the user to arbitrarily extend the

language to suit their purposes.

(l) Produce high-quality error messages (SHOULD): This language

is primarily intended to be a convenient tool for developers, so it

should be pleasant to use.

(m) Monitor the result of repeatedly running a specified query (SHOULD):

This could let the programmer, for example, track the velocity of

30

a particular Entity over time.

(n) Enforce a strong type system (SHOULD): This is likely to be

necessary, since it would allow the compiler to perform more safety

checks, so they could be omitted during execution, making it more

efficient.

(o) Compose systems together to build more complex ones (COULD):

The general idea would be to have a set of fundamental transfor-

mation systems, which the programmer can compose to quickly

produce interesting behaviour. The exact mechanism would de-

pend on the details of how the language is designed.

(p) Parallelise programs automatically (COULD): There are three

main possible approaches:

Data Parallelism Run a single System on multiple Entities si-

multaneously. ECS operations are naturally data-parallel on

the level of Entities, so this could be reasonably straightfor-

ward.

System Scheduling Run Systems that will not interfere with

one-another, most commonly by accessing the same Compo-

nents, at the same time.

Optimised Codegen If a System performs highly intensive com-

putations for every Entity, applying optimisations such as vec-

torisation in the ECSQL compiler could improve performance.

(q) Optimise code generation in the ECSQL compiler (COULD):

The performance of the resulting LLVM code could possibly be

improved by using vector intrinsic operations.

3. Write a set of tests (SHOULD): These will allow us to ensure the

31

code is working correctly. We could also include performance tests or

benchmarks. These would allow us to assess the runtime efficiency

of programs written with ECSQL compared to equivalent ones writ-

ten without it, and the effectiveness of extensions intended to improve

performance.

4. Create a demo game (SHOULD): The live demonstration in the pre-

sentation would be a lot more engaging with the example of a small

game developed using the system.

5. Allow ECSQL code to be compiled at the compilation stage of the host

language, and embed the result into a final executable (COULD): This

could reduce the cost of translation at run-time, and possibly mean the

language compiler itself could be omitted from the executable, reducing

binary size.

6. Implement a profiler for ECSQL (COULD): This could break down

how long functions called in ECSQL take to run. This would be useful

for performance testing, since a profiler for the host language probably

wouldn’t be effective at profiling the performance of ECSQL code.

7. Support game state serialisation and deserialisation, including the state

of Systems (COULD): This would be an easy way to save and reload

game data (between sessions), and send it across the network.

8. Accept ECSQL commands from remote network hosts and execute

them (COULD). This has many potential applications, although it

could have serious security implications, for example, allowing remote

code execution.

32

Chapter 4

Methodology

In this chapter we outline some of the methodologies we employed to complete

this project.

4.1 Research

This was not a research-focused project, so we took a straightforward ap-

proach to research. We read up on some existing ECS implementations, and

did a comparative analysis to help decide which features of each to incorpo-

rate into our ECS. The results of this can be seen in chapter 2. This research

also helped inform the design of the ECSQL Query language, which is largely

based on Flecs’ Query DSL [29].

We determined that “industrial” Lisp implementations such as SBCL and

GNU Guile would be too complex to inform our design. Instead, we focused

on educational resources about Lisp implementation as sources of inspiration

for the design, primarily Engelen [8] and Queinnec [35].

33

4.2 Design

For each step of the design process, we considered and analysed several ap-

proaches, sourced either from existing solutions or our own creativity. We

then compared each possible solution, weighed up their pros and cons, and

selected or synthesised a suitable approach to take for the implementation

based on that comparison. See chapter 5 for how we applied this process in

practice.

4.3 Development

By focusing on the MUST and SHOULD requirements in section 3.3, we

were able to determine the scope of a Minimum Viable Product (MVP) for

this project. It would comprise an ECS library, a Lisp implementation and

a Query language that would allow a game developer to manipulate games

created using the ECS library to manipulate the state of the Entities in the

game with Lisp code.

We chose to implement the MVP using a Waterfall methodology [3, Wa-

terfall]. This was the best choice, since we had a clear, fixed set of require-

ments, so we could create a schedule (see Gantt chart) and set of deliverables

(see deliverable-oriented WBS) before carrying out the implementation. Ad-

ditionally, since the product would not meet its most basic requirements un-

til the entire MVP was implemented, an iterative/sprint-based methodology

would not have been greatly beneficial at this stage.

In addition to the requirements of the MVP, we identified optional fea-

tures that would improve the usability of the product, but were not essential

to its success (identified as COULD requirements). We estimated each ex-

tension would take at most 1–2 weeks to implement, so we decided to adopt

34

an agile methodology while implementing them. This allowed us to take an

iterative approach to development, incorporating regular feedback after im-

plementing each extension (over a 1-week sprint) through weekly supervisor

meetings.

This workflow ensured we avoided wasting time and effort, since we only

researched and designed each extension during the sprint when we intended

to implement it. As a result, we only had to do research and design for the

extensions that actually made it into the final product.

The Agile workflow we adopted was as follows:

1. Do background research, and preliminary design work to determine the

general approach required to implement the extension.

2. Hierarchically decompose the feature into a set of implementation tasks,

filed as sections in the README.org file (see section 4.5).

3. For each task, write up detailed notes concerning how it is to be im-

plemented, and any issues that need to be addressed in the implemen-

tation, underneath the corresponding heading.

4. Execute all implementation tasks for the feature.

5. Demonstrate the feature implementation to the project supervisor, to

confirm it is sufficient.

We were also able to apply this workflow, to a lesser extent, during the

MVP development phase, presenting the incomplete implementation to our

supervisor each week as we progressively built more of the required function-

ality.

35

4.4 Testing

Lisp enables a somewhat unusual style of development that Graham refers to

as “Interactive Programming” [14, § 3.4]. Instead of producing a static test

suite, then compiling the code and running every test at once, the program-

mer can write one function at a time, and immediately call it (in the REPL)

with a few sample inputs. Once an error is identified, the faulty code can be

immediately updated and re-run in the same Lisp session, allowing very fast

turnarounds. This somewhat eliminates the need for writing unit tests.

We were obviously able (and willing) to adopt this approach for testing

the components of this project written in Lisp, some of which are among the

most complex, so we did. Furthermore, since we created bindings to Lisp for

most of the operations on the ECS anyway, we were able to adopt an only

slightly diminished form of the same testing methodology for the ECS code as

well, even though most of it was written in C. The same goes for all the Lisp

functions that we implemented in C (including concat and assoc). The only

part we couldn’t adopt this approach for was the core Lisp implementation

itself, but that was one of the easiest parts of the project, since we have

extensive prior experience implementing interpreters and compilers. As a

result, this testing methodology was sufficient for most of the project.

4.5 Tools

We used a few different software tools while working on this project.

Emacs This is our preferred development environment. It is also unques-

tionably the best editor for Lisp code, which we had to write a lot of in

this project. Notably, it includes the inferior-lisp package, which

36

provides an excellent interface for interacting with Lisp REPLs. This

made the experience of interacting with the REPL much smoother,

which was especially valuable because it made the demo in our pre-

sentation more compelling. For example, its history function can cycle

back through complete, multi-line Lisp expressions, which allowed us to

re-run the same Query several times, with minor alterations, without

having to re-type the whole thing.

GitHub Code hosting. Early on, we attempted to use the GitHub Projects

Kanban board for project management, but we found it cumbersome

to work with, so we switched entirely to Org mode.

Org Mode A plain-text note-taking and task management application [7].

Org Mode has a text markup syntax similar to Markdown, with built-in

support for marking headings with a workflow state. We used TODO,

DOING, DONE and CANCELLED states. This simple approach al-

lowed us to rapidly generate and consume new backlog tasks, which

was especially valuable while developing extensions. In addition, we

were able to keep our research and design notes for each task immedi-

ately under its corresponding heading, which was a lot more efficient

than having information about the same task stored in different places,

in different formats. It can also track when the workflow states of

tasks change, which we used to generate our burn-down chart (see Fig-

ure 7.2).

37

Chapter 5

Design

In this chapter we discuss the design of the complete ECSQL system. This

includes the ECS, the Lisp interpreter, and the Query DSL. The overall

architecture of the whole system is shown in Figure 5.1.

For the design of the ECS, we drew heavy inspiration from Flecs [29], and

blog posts by Sander Mertens [25, 26, 30], the creator of Flecs.

Our Lisp implementation uses a similar architecture to the one described

by Engelen [8], though ours is substantially more featureful.

5.1 Entities

As in most ECS libraries, we have chosen to represent Entities with unique,

numeric IDs. IDs are generated sequentially, wrapping around when an upper

limit is reached. We say an Entity is “live” if it has been assigned an ID,

and has not yet been “destroyed”. To ensure Entities’ IDs remain distinct,

we store the set of live Entities’ IDs, and skip forward to the first unused one

when creating an Entity.

One issue that can arise, when an Entity’s ID is used to store a reference

38

ECS

Lisp Interpreter

Lisp Code

System Executor(s)

Component StoreEntity Index

Query Matcher

PrimitivesEvaluator

REPL Reader

Query Compiler

Standard Library

StructsEntity Utils

Component Utils System Utils

Figure 5.1: Architecture of ECSQL.

39

to it, is that if a referenced Entity is destroyed, this can leave a dangling

reference. This isn’t too hard to solve, since we can just check if the Entity

is live before using the reference, but that doesn’t work if another Entity is

created with the same ID before the check. As mentioned in subsection 2.1.1,

this is typically solved by adding a Generation count alongside the ID [30].

The Generation is incremented each time an ID is reused, so a particular

ID + Generation pair will only refer to a single Entity throughout the whole

lifetime of the program.

See subsection 6.4.1 for the exact memory layout of Entity IDs.

5.2 Components

The main design considerations for Components are how they are identified,

how we keep track of what Components each Entity has, and how Component

data is stored and accessed.

5.2.1 Component Representation

We have adopted an idea from Flecs of representing Components as Enti-

ties [30]. Mertens explains a few benefits of this approach, with three of his

examples being directly relevant to this project:

Reflection Type information about a Component can be stored as a Com-

ponent of that Component. For example, a Position Component could

have a Type Component that indicates positions are stored as 2D vec-

tors. We will need run-time type information for Components so Lisp

code can manipulate them, so this is essential.

Support for scripting languages Since Components are Entities, and En-

40

Entity

ID : int
Generation : int

Archetype

ID : ArchetypeID
Type : Entity[n]
Entities : Entity[m]
Columns : Column[n]
Neighbours

Column<T>

Components: T[m]

Entity Record

ArchetypeID : ArchetypeID
row : int

Archetype Map
ArchetypeID column : int

Neighbours
Component ID Archetype

0..n

Entity
Index

1

1

0..*

1

Component
Index

1

0..1

1

0..*

1

1
0..*

Figure 5.2: Architecture of the Component Store.

Figure 5.3: An example Archetype graph, created by Mertens [26].

41

tities can be created as run-time, so too can Components. This would

allow us to define Components within Lisp.

Tooling Tools such as editors can use ECS Queries to get information about

Components the same way as they could for “normal” Entities. A large

part of the motivation for this project was to create tooling for ECS

games, so this only expands the potential capabilities of the product.

Components that contain data, such as Position, have a Component called

Storage added to them, that contains the size of that data. This also makes

it easy to represent Tag Components as Entities that don’t have the Storage

Component.

5.2.2 Component Storage

The way Components are stored is a major contributor to the performance of

an ECS implementation, so doing so efficiently has been the subject of much

discussion [21, 26]. The main recurring point in these discussions is that

the best way to maximise throughput is to store data (e.g. Components)

contiguously in memory, and iterate linearly through it. This has highly

predictable memory access and control flow behaviour, so the instruction

and data caches are used efficiently, with minimal evictions.

Since our aim was not to break new ground in this field, we based our

design (see Figure 5.2) on one created by Mertens [26], which is supposed to

offer good performance, while remaining reasonably straightforward.

The design is Archetype-based, meaning all Component data for all En-

tities with the same Archetype (set of Components) is stored together. Each

Archetype has a “type” vector, which contains the Entity IDs of the Com-

ponents in that Archetype.

42

The values of a particular Component for all Entities in a given Archetype

are stored in an array, called a column. Each of the Component values for a

particular Entity are stored at the same position in each Column, that being

its row.

We use two main data structures to track which Entities and Components

are in which Archetypes:

Entity Index This stores the Archetype of each Entity, and the row in the

Archetype where that Entity is stored.

Component Index For each Component, this stores the Archetypes it is

in, and what Column within each Archetype its data is in, if any.

The process to get the value of a Component for a particular Entity is as

follows:

1. Find the Entity’s Archetype and row in the Entity Index.

2. Identify the column in that Archetype that stores the Component using

the Component Index.

3. Use the row and column indices to obtain the address of the Component

value within the Archetype.

To test whether an Entity has a Component, we look up what Archetype

it is in using the Entity Index, and search for that Component in that

Archetype’s Type vector (an array of Component IDs).

This design also features what Mertens refers to as an Archetype graph

(see Figure 5.3). The Neighbours member in each Archetype maps a Com-

ponent (Entity) ID to the Archetype you would get by adding or removing

that Component on the original Archetype. This makes it more efficient to

43

add/remove single Components of Entities, since we can just follow the cor-

responding reference in the Neighbours map. The mappings are added lazily,

as Entities move in/out of the Archetype.

In Mertens’ version, there are edge nodes (indicated by the circles in

the diagram) that contain references to the two Archetypes at either end of

the edge (labelled “add” and “remove”). This adds an unnecessary extra

indirection when traversing an edge, so we directly store references to the

neighbour Archetypes in the Neighbours map.

One part of Mertens’ design we didn’t implement was a mechanism to

look up Archetypes directly using the “type” vector (of Component IDs).

In Mertens’ design, this is used when creating an Entity, to find its initial

Archetype. We chose not to include this because the hash map library we

used (klib) does not support hashing arrays. Instead, we create every Entity

with no Components (and put it in the pre-defined “empty” Archetype), then

add the Components one at a time, traversing the Archetype graph. This is

undoubtedly less efficient, but creating Entities and adding/removing Com-

ponents are relatively uncommon operations anyway, so we did not consider

them important to optimise.

5.3 Systems

Systems are represented as Entities, with many of the same benefits as rep-

resenting Components as Entities. We attach the following Components to

Entities representing Systems:

Query A compiled ECSQL Query (see subsection 5.5.1), that selects which

Entities the Systems runs on, and binds Component data as appropri-

ate.

44

System A function that implements the System’s behaviour.

SystemData Arbitrary data passed to the System function each time it is

invoked. This allows us to create multiple instances of the same System

that behave differently, depending on the value of this data.

5.3.1 System Scheduling

We can use a Query to find and run a set of Systems: (select System Query SystemData).

One limitation of this approach is that we don’t necessarily know what

order Entities will be in when iterating over the results of a Query. The order

Systems are executed in can affect the behaviour of the game in unexpected

ways, so we must enforce some ordering on them. For example, the displayed

position of a moving Entity will be different depending on whether its position

is updated before or after it is drawn on-screen. On the other hand, the order

in which other pairs of Systems are executed is irrelevant, so we only need a

partial ordering for the results to be predictable.

We used a phased approach to enforce this partial ordering [29, Systems].

Each System is given one of a set of Phase Components. We can then use a

Query to run the set of Systems with each Phase in a manually defined order.

While we won’t necessarily know what order Systems will run in within a

Phase, we do know all Systems in one Phase run before all Systems in the

next.

5.3.2 Entity Names

The API function ecs-set-name, inspired by Mertens [29], assigns a unique

identifier to an Entity. This makes it easier for the user to refer to a specific

Entity repeatedly, since they don’t have to remember its ID, which may not

45

even be the same between sessions. This is especially useful for Components.

Entity names in ECSQL are Lisp symbols. This is convenient, because

once a symbol is read in, we have a unique representation of it that is easy

to compare (==), and makes Queries integrate better into the rest of the Lisp

code in a project, since we don’t have to use strings for Entity/Component

names.

5.4 Lisp

The Lisp dialect we were most familiar with prior to starting this project was

Common Lisp (see subsection 2.3.3), so we went with a similar design. We

used Engelen [8] as a basis for the general architecture of the interpreter.

5.4.1 Type System

Our Lisp language has the following built-in types. Each of these names is a

Lisp symbol, which is used to refer to that type in the implementation.

nil A null value. Terminates a list. The semantics of this differ between

Lisp dialects. In our case, there is exactly one nil value, displayed as

(), and we define a global variable, nil that has that value.

We have not included a Boolean type, adopting the Lisp convention

of () (the nil value) representing “false”, and all other values being

considered true [8, p. 11]. This convention also entails using the symbol

t to represent “true”, when no other information is necessary.

string A string.

character A character, physically distinct from integers.

46

i32 A 32-bit signed integer.

f32 A 32-bit floating-point number.

file A file handle. We mainly included this so we could implement load in

Lisp.

vector A fixed-length array of Lisp objects.

undefined An undefined value, used to indicate error conditions. This

is mostly unnecessary, since we have proper error handling support

(see subsection 5.4.6), but could theoretically be used for non-fatal er-

rors.

symbol An object with a textual name. Each symbol is equal to itself, and

not equal to anything else.

pair A pair of two values, referred to as the car and cdr. Linked list nodes

are pairs, where the car stores the value at that node, and the cdr

stores a reference to the next node.

primitive A built-in Lisp function, written in the host language (C). Func-

tions should usually only be implemented as primitives for performance,

or to integrate with a native code library (such as our ECS).

closure A function written in Lisp. See subsection 5.4.3.

entity An ECS Entity (ID). Technically, we could have represented Entities

using other types like integers, pairs or structs, but this approach has

some concrete advantages:

• We can restrict what operations are allowed on Entity objects,

and how they are created, to make it harder for “invalid” Entity

47

objects (that do not refer to a live Entity) to be created. For ex-

ample, we can disallow adding numbers to an Entity ID to produce

a different one.

• The Lisp printer can display them differently from other data, so

the meaning of their value is clear.

• The entire Entity ID can fit within our object representation

(see subsection 6.4.1).

5.4.2 Structs

In addition to the built-in types, our language supports user-defined data

structures, or structs, with a similar set of operations to structs in C. Struct

members can be any previously-defined type, including struct types. See List-

ing 5.1 for an example of how these can be used.

Defining a struct type will define the following functions:

Constructor (make-{struct}) Creates a new struct with initial values for

all struct members.

(Nested) Getters and Setters ({set-,}struct-{member}) Functions to

access not only the immediate members of the struct, but also the mem-

bers of any child structs (e.g. player-pos-x). The nested accessors

make accessing child struct members much more concise than it would

be otherwise, since we only need one function call, rather than multiple

nested calls.

Copier (copy-{struct}) Copies the values of all members of a struct to

another of the same type.

48

Complete Setter (set-{struct}) Assigns new values for all struct mem-

bers at once. Technically, we could achieve this behaviour by creating

a new struct and copying its values across, but this is more convenient

and saves an unnecessary allocation.

Type Predicate ({struct}p) Tests whether a value is of that struct type.

Printer (print-{struct}) Allows the value of a struct to be printed at the

REPL.

Listing 5.1: Lisp struct definition and use.

* (defstruct v2

(x f32)

(y f32))

* (defstruct player

(rotation f32)

(name string)

(pos v2)) ; Recursive structs

* (defvar a

(make-player 90.0 "Aidan" (make-v2 -20.0 42.1)))

#* player (90.0 "Aidan" #*v2 (-20.0 42.1))

* (player-name a)

"Aidan"

* (set-player-pos-x a 99.9)

* a

#* player (90.0 "Aidan" #*v2 (-20.0 99.9))

We included structs in our design in order to represent ECS Component

types. Components that need to be used in C code must have a static

C type, so the constraints on the struct members’ types must be preserved

when working with Components in Lisp. As a result, we enforce strict typing

for struct members, so each is always of a known type.

49

5.4.3 Scopes and Closures

For simplicity, we chose to only support global function scope. Lambda

expressions in Lisp create lexical closures; to implement these correctly we

had to support local variable scope, in addition to global variable scope.

Macros, like functions, can only have global scope.

Closures allow Lisp functions to capture the scope in which they are

defined, and retain access to it whenever they are called. For example, in

Listing 5.2, the adder function returns a function that captures the value of

n, so calling it later will add 5 to the argument. They are integral to the way

Lisp code is written, so our language must implement support for them.

Listing 5.2: Closure Example

* (defun adder (n)

(lambda (m)

(+ n m)))

adder

* (defvar add5 (adder 5))

add5

* (funcall add5 6)

11

5.4.4 Macros

Our macro system is fairly typical. Refer to any of the resources on Common

Lisp we have cited for more information.

5.4.5 REPL

A read-eval-print loop:

1. Print a prompt to indicate the process is waiting for input.

2. Read a Lisp expression from the user.

50

Shorthand Expansion Description
'x (quote x) Quotes the next form, so it is not evaluated.
`x (quasiquote x) Backquotes the next form [13, p. 399].
,x (unquote x) Unquotes the next form (counterpart to `x).
#'x (function x) Access the definition of x in the function namespace.
#/x (macro x) Access the definition of x in the macro namespace.
#\x Character x The next character after #\ is read in as a character object.
#*x init (make-x . init) Allows the printed representation of structs and a few

other complex types to be correctly read in.

Table 5.1: Lisp Shorthands

3. Evaluate it.

4. Print the result.

5. Repeat.

5.4.6 Error Handling

As mentioned in subsection 5.4.1, we have the undefined type to represent an

invalid value. We decided this was insufficient for cases where errors occur

in deeply nested expressions, so our language also has the wrong primitive

function. It stops evaluation, prints an error message, and resumes execution

at the REPL.

5.4.7 Syntax and Short-Hand Forms

Our Lisp has a fairly standard syntax, with the addition of a few conve-

nient short-hands forms. These function similarly to Common Lisp’s read

macros [13, p. 399]. A few of the notable ones are listed in Table 5.1.

5.4.8 Core Language and Special Forms

This is the main function that evaluates a Lisp form. See algorithm 1.

51

Algorithm 1: Basic Lisp Evaluator

Input: expr
if expr is a cons cell/pair then

if car of expr is a special form keyword then
Handle it specially;
return special result.

else
Call function named in car of expr with cdr of expr as
arguments;
return result of application.

end

else
return expr.

end

Most list forms have a function in the first position, in which case the

function is applied. There is a set of special forms, however, that cannot be

implemented as functions, and would be at best impractical to implement as

macros. Instead, they must be hard-coded into the evaluator. They are as

follows:

(quote form) Return form without evaluating it.

(function name) Look up name in the function namespace.

(macro name) Look up name in the macro namespace.

(progn body...) Evaluate the body forms in sequence and return the result

of the last one.

(lambda params body...) Create a closure (a callable Lisp function ob-

ject) that captures the scope in which it is defined, with the supplied

parameters and body.

(and args...) Evaluate each argument form in sequence. Stop and return

52

nil if one returns nil. If none return nil, return the result of the last

argument form.

(or args...) Evaluate each argument form in sequence. Stop and return

the result of the first one to not return nil. If all return nil, return

nil.

(if cond then else...) If cond evaluates to a true value, evaluate the

then form, otherwise evaluate the else forms.

(while cond body...) Repeatedly execute the body forms, as long as the

cond form returns a true value.

((lambda params body...) args...) Execute body in the current con-

text, with the addition of the names in the params list bound to the

results of evaluating the corresponding args.

(setq var val) Assign var the value obtained by evaluating val.

5.4.9 Macro System

Our Lisp interpreter has a dedicated macro expansion step, before normal

evaluation begins. We chose to include this because a large part of the benefit

of a dedicated macro system over calling eval at run-time is that macros are

only expanded once, at compile time Graham [13, p. 162]. Considering our

intentions to make heavy use of macros to implement the DSLs in this project,

it would be unwise to repeat the computation required to expand a macro

every time we evaluate a piece of code containing one.

See algorithm 2 for a simplified overview of a macro expansion procedure.

Of critical importance is the fact that the arguments are not evaluated before

we pass them to the macro. This is, in large part, what distinguishes macros

53

from normal functions, allowing them to do things like compile DSL code

into Lisp.

Algorithm 2: Macro Expansion Procedure

Input: form
if form is a list then

head← macroexpand(car(form));
args← cdr(form);
if head is a macro name then

macro← The macro with name head;
return macro(args).

else if head is quote. then
return args.

else
Apply macro expansion to each element of args;
return cons(head, args).

end
return form.

5.4.10 Primitive Functions

In order to do anything useful with this language, we must include a set

of basic “primitive” Lisp functions, implemented in C. These include mathe-

matical, string, list and ECS (see Table 5.2) operators, as well as fundamental

Lisp operators like funcall and eq.

Most of these functions have a restricted set of valid argument types, so

to save the effort of implementing type checking in every primitive function,

we have defined a small DSL to express these restrictions, using Lisp data

(see subsection 5.5.3).

54

Function Operation
ecs-new Create an Entity.
ecs-add Add a Component to an Entity.
ecs-has Check if an Entity has a Component.
ecs-set Set the value of a Component for an Entity.
ecs-get Get the value of a Component for an Entity.
ecs-remove Remove a Component from an Entity.
ecs-destroy Destroy an Entity.
ecs-new-component Create a new Component.
ecs-set-name Create an identifier for an Entity.
ecs-entity Find the Entity with a certain ID.
ecs-lookup Find the Entity with a certain name.

Table 5.2: Primitive ECS Lisp API

5.4.11 ECS Lisp APIs

The API in Table 5.2 provides an interface for Lisp code to perform ECS op-

erations. Each maps almost directly to a function that we had to implement

in C. This API could be used as shown in Listing 5.3.

Listing 5.3: Example use of the primitive ECS API.

* (defvar a (ecs-new))

#* entity (25 0)

* (ecs-new-component 'v2)
#* entity (26 0)

* (ecs-set-name (ecs-entity 26) 'C)
t

* (ecs-add a (ecs-lookup 'C))
Adding new archetype link.

()

* (ecs-set a (ecs-lookup 'C) (make-v2 2.0 -3.5))

#*v2 (2.000000 -3.500000)

* (set-v2-x (ecs-get a (ecs-resolve 'C)) 5.0)

5.000000

* (ecs-get a (ecs-lookup 'C))
#*v2 (5.000000 -3.500000)

This API is suitable for C code, which tends to be verbose and low-

level anyway, but we felt we could create a better API for user code. The

55

Function/Macro Operation
ecs-resolve Get the Entity with a given ID or name.
ecs-add* Add and set multiple Components (see sub-

section 5.5.2).
defcomponent Define a named, documented Component, and

make that name a Lisp variable.

Table 5.3: High-Level ECS Lisp API

additional functions/macros are listed in Table 5.3. They make manipulating

the ECS in Lisp much more elegant, as shown in Listing 5.4.

Listing 5.4: Example use of the high-level ECS API.

* (defcomponent B f32)

#* entity (24 0)

* (defcomponent C v2)

#* entity (25 0)

* (describe 'C)
C

symbol

A Component. Stores data of type v2.

()

* (defvar a

(ecs-add* (ecs-new)

(B 10.5)

(C 2.0 -3.5)))

#* entity (26 0)

* (list B C (ecs-get a B) (ecs-get a C))

(#* entity (24 0) #* entity (25 0) 10.500000 #*v2 (2.000000 -3.500000))

5.5 Domain-Specific Languages

Although the main DSL in this project is the ECSQL Query language, due

to the flexibility of Lisp’s list structure, we were able to implement a couple

more DSLs for other parts of the project.

56

5.5.1 ECSQL Query Language

ECSQL Queries serve two purposes: they act as a predicate that an Entity

must satisfy for it to match, and they describe a set of Components that

must be “bound”, so their values can be used in a System. The grammar of

ECSQL is illustrated in Listing 5.5. The predicate and binding meanings of

a Query can be extracted out into separate expressions, of the forms shown

in Listing 5.6 and Listing 5.7.

A single Component name or ID on its own means that an Entity must

have that Component to match, and that the value of that Component is

bound. The meanings of the and, or and not expressions in a predicate are

self-evident. Concerning binding, and inherits its child Queries bindings in

sequence, or inherits the bindings of its first child Query that matches, for

each Entity/Archetype, and not binds nothing.

An opt expression inherits its child Query’s bindings but has no predicate,

so the bindings will only apply if a given matched Entity actually has the

relevant Components.

Finally, a has expression inherits its child Query’s predicate, but has no

bindings. This is useful for Queries that match Tag Components, but have

no data. It is inspired by Bevy’s With predicate (see section 2.1.2).

As an alternative to that long-winded prose explanation, Table 5.4 presents

the dual meanings of each Query form in a more structured way.

Listing 5.5: BNF Grammar for the ECSQL Query language.

<query > ::= (and <query > <query >*)

| (or <query > <query >*)

| (not <query >)

| (has <query >) ; Matches without loading data.

| (opt <query >) ; Optional

| <component >

57

Query Form Predicate Bindings
<component> “Has this Component.” This Component.
(and <query>*) “All child Queries match.” Bindings of each child Query,

in sequence.
(or <query>*) “Any child Query matches.” Bindings of first matching

child Query.
(not <query>) “The child Query does not match.” None.
(has <query>) “The child Query matches.” None.
(opt <query>) None. Same as child Query, for each

Component that is present,
or null for Components a
matched Entity doesn’t have.

Table 5.4: ECSQL Query binding and predicate condition rules

<component > ::= <symbol > ; An Entity/Component name.

| <integer > ; An Entity/Component ID.

Listing 5.6: BNF Grammar for ECSQL predicates.

<pred > ::= (and <pred > <pred >*)

| (not <pred >)

| (or <pred > <pred >*)

| <integer > ; An Entity/Component ID.

Listing 5.7: BNF Grammar for ECSQL binding lists.

<binds > ::= (<binding > . <binds >)

| ()

<binding > ::= <id > ; An Entity/Component ID.

| (or <id> <id >*)

| (opt <id >)

The primary, interactive interface for writing ECSQL Queries is, fittingly,

the ecsql macro. It is called as shown below. The bindings argument is a

list of names of variables that are bound to the values of bound Components

in the Query, and the body is evaluated for each Entity that the Query

matches. We also provide the select macro that just compiles a Query, for

use with C Systems, and the ecs-new-system macro for creating Systems in

Lisp. The latter has an interface that is mostly the same as ecsql, with an

58

additional parameter to add Components to the System Entity (most often

a Phase; see subsection 5.3.1).

(ecsql <query > <bindings > <body >...)

(select <query >...)

(ecs-new-system <components > <query > <bindings > <body >...)

The following examples may help with understanding the ecsql interface.

Consider this ECS world:

Entity Component A (symbol) Component B (f32)

27 3.0

28 cool 1.0

Both Entities have Component B, but only Entity 28 has Component B.

In this context, we can use and and opt to get the following result. Since

Entity 27 doesn’t have a value, opt binds a to () when the Query runs on

it.

* (ecsql (and (opt A) B) (a b) (print (list entity a b)))

(#* entity (28 0) cool 1.000000)

(#* entity (27 0) () 3.000000)

Next, since only Entity 28 has Component A, the Query (or A B) will

bind Component A for Entity 28, but Component B for Entity 27. The

bound value of x has a different type in each match, but this works naturally

because of Lisp’s dynamic type system.

* (ecsql (or A B) (x) (print (list entity x)))

(#* entity (28 0) cool)

(#* entity (27 0) 3.000000)

Finally, we can write Queries that bind no values at all!

* (ecsql (and (has B) (not A)) () (print entity))

#* entity (27 0)

These examples mainly illustrate the power of the Query language itself.

A large part of the power of the ECSQL system comes from the fact that

59

code in the body of an ecsql expression can manipulate the values of Com-

ponents, and what Components an Entity has. See section 8.1 for some more

compelling examples, operating on a more interesting ECS world.

5.5.2 Entity Initialisation

It is common to add multiple Components to an Entity at the same time,

especially when creating it. To make it easy to perform this repetitive opera-

tion, we have defined the ecs-add*macro. It is similar to the ecs:make-object

function in cl-fast-ecs (see section 2.1.2). While not huge, it does imple-

ment a simple DSL, a BNF grammar for which is shown in Listing 5.8.

Listing 5.8: BNF Grammar for ecs-add*.

<start > ::= (ecs -add* <entity > <entry >*)

<entry > ::= <component >

| (<component > initialisers ...)

| (<component > = <value >)

| (<component > : <entity >)

| (expr <expression >)

<component > ::= <id > | <name >

Each entry form adds the corresponding Component. In addition, the list

form ones have the following behaviours:

(<component> ...) Initialises the Component using the remaining argu-

ments. If the Component is stored as a struct, the corresponding con-

structor is called.

(<component> = <value>) Assigns the Component the result of evaluating

the expression after the = sign. This is useful for initialising a Compo-

nent with a pre-defined struct.

60

Primitive Arguments Type Specification
quit None. ()

funcall At least one argument of any type. (t . t)

+ Any number of floats or integers. (* (or f32 i32))

aset Vector, index, value. (vector i32 t)

length A list, vector or string. ((or pair vector string nil))

Table 5.5: Example Primitive Argument Type Specifications

(<component> : <entity>) Copies the Component value from the Entity

after the colon. This makes it possible to create “template” Entities,

with standard Component values that can be copied when instantiating

new “real” Entities.

(expr <expression>) Add the result of evaluating the Lisp expression <expression>

at run-time. This makes it possible to add the value of a variable as

a Component. There is no way to set the value in this case, since we

can’t know the Component type at compile time.

5.5.3 Primitive Argument Type Specifications

This DSL provides an expressive way to declare the types of arguments a

primitive function may accept. This power is necessary, since many of the

primitives take variadic argument lists, with complex constraints. The BNF

grammar is shown in Listing 5.9. We have included some examples of type

specifications for our primitive funtions in Table 5.5.

Listing 5.9: BNF Grammar for Primitive Type Specifications

<typespec > ::= (or <type > <type >*) ; One of these must match.

| (* <typespec >) ; Any number of repetitions.

| <typeseq > ; Match each typespec in order.

| () ; No more arguments.

| t ; Any type.

| <type > ; Next arg is of type <type >.

61

5.6 Asynchronous REPL

Of the additional, optional features we added, the most valuable was an

asychronous REPL. We didn’t intend to implement parallel scheduling, so

the whole system would run in a single thread. However, we needed the

REPL to wait for user input, while the rest of the game kept running.

We considered using non-blocking I/O, but we had already implemented

the Lisp reader in a way that was not compatible with that approach. The

solution we went with was to run just the REPL in a dedicated thread,

with a lock on the Lisp memory allocator, and no other protection. Given

how infrequent commands run from the REPL are, this approach worked

with only the occasional minor bug, which we deemed adequate, especially

considering how simple it was to implement.

62

Chapter 6

Implementation

Any sufficiently complicated C or Fortran

program contains an ad-hoc, informally-specified

bug-ridden slow implementation of half of

Common Lisp.

Greenspun [15].

In this section we discuss how we implemented the ECSQL system, and

how we came to make certain decisions about what approaches to take.

We chose C as our implementation language. It made sense to use a

systems language, since a primary aim of the project was to tackle usability

issues with ECS libraries written in these languages. We used C over a more

featureful language like C++ because we did not expect to benefit from most

of those additional features, and believed they would only distract us.

In addition to the C standard library, we used Klib [4] for dynamic arrays

and hashmaps, and Raylib [37], which provides I/O, a drawing API, and a

basic vector maths library.

In retrospect, we created unnecessary work for ourselves by using C in-

63

stead of C++, especially when using Klib’s verbose hashmap API. On the

other hand, it did make deciding how to implement certain features easier,

since C provided far fewer options than C++ would have.

6.1 Entities

As mentioned in subsection 5.4.1, Entities are one of the built-in types of

Lisp objects. As such, we decided to work with Entities in C stored as Lisp

objects. This obviously came with some reduction in type safety, since any

type of Lisp object could be passed to ECS functions that expect an Entity.

On the other hand, this made interoperating with Lisp code much easier,

since we could pass Entities back and forth, without having to convert them

between the Lisp object type and a dedicated Entity type.

We used two data structures to track Entity liveness: the live set and the

Generation map. The live set simply stores the IDs of all Entities that are

currently alive. The Generation map stores the Generation value for each

Entity ID. To save space (and time at startup), we fill in the Generation map

lazily, by initialising the Generation for an Entity ID to 0 the first time it is

requested.

When an Entity is created, its ID is added to the live set. We can then

produce a Lisp object to represent it. This contains its ID, and the cor-

responding Generation value. The code works approximately as shown in

Listing 6.1. The next_entity variable allows the search for a free Entity

to start from where the last one left off, rather than first checking all the

smaller ID values, which are much more likely to be in use.

To destroy an Entity, we remove its ID from the live set and increment

the corresponding Generation count.

64

Listing 6.1: A Function to Create an Entity.

Object new_entity_id(World *world) {

u32 id = world ->next_entity;

/* id <- next available ID from world ->next_entity */

world ->next_entity = id + 1;

/* Add id to live set. */

kh_put(live , world ->live , id);

/* ... */

return ENT_BOX(id , *ecs_generation(world , id));

}

The live set is primarily used to check if an ID is available when creating

an Entity. To test if a “complete” Entity (with ID and Generation) is alive,

we check if the Generation map’s entry for that ID matches the Generation

stored in the Entity (see Listing 6.2). We increment the Generation when

we destroy an Entity, so only live Entities can satisfy this check.

Listing 6.2: Entity Liveness Test

bool ecs_alive(World *world , Object entity) {

return *ecs_generation(world , entity.id) == entity.gen;

}

6.1.1 Entity Names

A name is a unique, human-readable identifier for a particular Entity. The

fact that they must be unique, in addition to the fact that we need to be

able to look up an Entity by its name, means that it actually wouldn’t make

much sense to implement names as Components. Instead, we use a hash

map from names to Entities. This is efficient because names are symbols,

each of which has a unique 64-bit representation in our Lisp environment

(see subsection 6.4.1), so we can use integer hashing.

65

We store the Entities that names map to with their Generation counts,

and automatically remove a name if the Entity it references is no longer alive

when attempting to look it up.

6.2 Components

We implemented the Component store essentially as described in the de-

sign, with a few complications. It is Archetype-based, with a concrete data

structure representing each Archetype (see Listing 6.3).

The Column type is a generic dynamic array, in which the size of elements

is determined at run-time. This is less efficient than an implementation where

the element size is known at compile time, but this trade-off was necessary

because we don’t know what Archetypes will exist at compile-time, and some

Components aren’t even defined until run-time.

Listing 6.3: Our Archetype type definition.

typedef struct Archetype {

ArchetypeID id;

Type type;

kvec_t(size) component_columns;

kvec_t(EntityID) entities;

kvec_t(Column) columns;

khash_t(archetype_edge) * neighbours;

} Archetype;

The ArchetypeID type acts as a unique identifier for a specific Archetype,

which we can expose to code outside the Component store without making

the implementation of Archetypes public.

The Entity list (entities) is effectively another Column that every Archetype

has, and always stores the Entities themselves.

66

6.2.1 Adding and Removing Components

The processes of adding and removing a Component are mostly the same, to

the point that both are thin wrappers over the same function: move_entity().

This function can move an Entity from any Archetype to any other Archetype,

and copies across the values of Components that are in both. It adds the

Entity to the new Archetype before removing it from the old one so it can

copy the Component data.

The Component data for all Entities in an Archetype is stored entirely

in contiguous arrays, so adding an Entity to an Archetype is as simple as

increasing the length of each Column by 1, and putting the Entity’s ID and

Components in the last row.

Removing an Entity from an Archetype is a little more complicated, since

doing so can create a hole in the contiguous rows of Component data. To fix

this, we move the Entity in the last row into the row that was vacated, along

with all its Component data. This requires us to update that Entity’s row

value in the Entity Index. The alternative would be moving every Entity

after the hole back by one, which would obviously be less efficient. This

approach was suggested by Morlan [32].

6.2.2 Component-Column Mapping

Not every Component contains data. We should only allocate Columns to the

ones that do. We represent these allocations using an array (component_columns)

in each Archetype; it contains the index of the Column allocated to each

Component, or −1 if the Component doesn’t have data. We took this simple

approach, rather than using something like a hash map, because Archetypes

generally have fewer than 10 Components, so anything more complicated

67

would have been excessive.

If a Component should contain data, we add the Storage Component to

it. Storage contains the size of the data required for a Component, which

is used as the element size in the corresponding Column when initialising an

Archetype.

6.2.3 Bootstrapping the Storage Component

The technique described in subsection 6.2.2 works for most Entities and Com-

ponents, but has a slightly involved set-up process. The Storage Component

contains the size of the Component it is added to, so it must be added to itself.

This creates a cyclic dependency, since Storage must be initialised before

it can be added to Entities, but it has to be added to itself as part of that

initialisation!

Our solution for this is as follows:

1. Create the Storage Entity, which will initially be in the “empty”

Archetype, since it has no Components.

2. Create the Archetype for Entities containing only Storage ([Storage]).

Since Storage doesn’t have the Storage Component, this will contain

no Columns.

3. Manually add the Column for Storage (with the correct element size)

to that Archetype, and point the appropriate (only) entry in component_columns

at it.

4. Add the Storage Component to itself as normal, and it will move

into the [Storage] Archetype. Set the value of its newly-created

Storage Component to sizeof(struct Storage), and we can safely

add Storage to other Entities that we want to represent Components.

68

6.2.4 Lisp Components

We did not consider it essential to be able to access every Component’s data

in Lisp. For the ones that do need to be accessible from Lisp, we created

the LispComponentStorage Component (see Listing 6.4). It contains all the

information necessary to give Lisp code access to the value of a Component

value stored in the ECS.

Listing 6.4: LispComponentStorage Component.

enum LispComponentStorageType {

STORE_OBJECT , STORE_STRUCT , STORE_UNBOXED };

struct LispComponentStorage {

enum LispComponentStorageType type;

u16 struct_id;

size size;

enum ObjectTag object_type;

};

There are three storage formats for Components:

Struct A struct, with the struct type ID in the struct_id member, and

the struct’s size stored in size.

Object A full, boxed Lisp object, with the Object type tag in object_type.

Unboxed A single, raw value, such as an integer or floating-point number.

The Object type tag for these is also stored in object_type.

All Components with the LispComponentStorage Component are also

expected to have Storage, so the size member may seem redundant. On

the other hand, it allows us to exchange Component data between Lisp and

C without reading Storage, which saves an ECS lookup in Lisp primitives

like ecs-get.

69

6.3 Queries & Systems

Our implementation of Queries is split between C and Lisp code. The Lisp

code mainly serves to provide a frontend to the C code, that is more suitable

for interactive use.

6.3.1 Query Compilation

The translate-predicate function in query.lisp compiles a Query of the

form defined in Listing 5.5 into the separate predicate and binding list forms

defined in Listing 5.6 and Listing 5.7. The function is somewhat involved,

and performs a substantial amount of list structure manipulation, so we

benefited greatly from implementing it in Lisp. It is also only called at most

once per Query, so its performance is not of critical importance, so we had

little reason to implement it in C.

We now consider Listing 6.5 as an example, to illustrate the behaviour of

translate-predicate. The Query (and (has A) (opt B) C) is compiled,

generating a pair containing the predicate and the binding list forms1.

The binding list, ((opt #*entity(26 0)) #*entity(29 0)), contains

references to Entities B (26) and C (29). Component A (25) is not bound,

since it is wrapped in a has expression in the Query.

The predicate, (and #*entity(25 0) (and) #*entity(29 0)), only ref-

erences Entities A & C, because B was inside an opt expression. The empty

(and) predicate is generated because the Query (opt B) has no require-

ments, and (and) happened to be a conveninent way to express that.

The generated function, in the second argument to ecs-do-query, takes

1In this expansion, we have used the dotted pair notation to clearly distinguish the
binding list and predicate, although this is not how it would normally appear when printed,
because the predicate, a list, is in the cdr of the pair.

70

the Entity and the bound Component values as arguments. The implemen-

tation of ecs-do-query determines what values these should be, based on

the Query (see subsection 6.3.3).

Listing 6.5: ECSQL Macro Expansion.

* (list A B C)

(#* entity (25 0) #* entity (26 0) #* entity (29 0))

* (ecs-add* (ecs-new) A (B 2.0) (C 'cool))
#* entity (27 0)

* (ecsql (and (has A) (opt B) C) (b c)

(print (list entity b c)))

(#* entity (27 0) 2.000000 cool)

* (macroexpand-1

'(ecsql (and (has A) (opt B) C) (b c)

(print (list entity b c))))

(ecs-do-query

'(((opt #* entity (26 0)) #* entity (29 0))

. (and #* entity (25 0) (and) #* entity (29 0)))

(lambda (entity b c)

(print (list entity b c))))

6.3.2 Query Execution

The function ecs_do_query in query.c takes a compiled Query and a System

function pointer, and calls the function for each Archetype that matches the

Query’s predicate. It also generates an EcsIter object based on the binding

list. This contains an array of the Column numbers of the Components

that are bound, providing an easy way for C System functions to access the

matched Component data, as shown in Listing 6.6.

In move, Pos is the first Component bound in the Query, and Vel is

second, so the system can access them by passing 0 and 1 respectively to

ecs_iter_get. We adapted this API from Flecs [29]. Notice that, since we

71

know the types of the Components in this context, we can cast the (void)

pointer returned by ecs_iter_get to that type, allowing us to access the

Component data in a very clean way.

A System function, or SystemFunc, implements a transformation to apply

to the Entities matched by a Query. A C System function is any function

with the same type as move (see Listing 6.6). A Lisp System function takes

an Entity as its first argument, followed by the (values of the) Components

it uses. They aren’t necessarily attached to Systems, and may only run once,

as is the case with the functions generated by the ecsql macro.

Listing 6.6: A C System function.

typedef void(SystemFunc)

(LispEnv *lisp , struct EcsIter *iter , void *data);

/* Query: (select Pos Vel) */

void move(LispEnv *lisp , struct EcsIter *iter , void *data) {

struct Vector2 *poss = ecs_iter_get(iter , 0);

struct Vector2 *vels = ecs_iter_get(iter , 1);

size N = ecs_iter_count(iter);

float delta = GetFrameTime ();

for (size i = 0; i < N; ++i) {

poss[i].x += vels[i].x * delta;

poss[i].y += vels[i].y * delta;

}

}

Since ecs_do_query only runs on C System functions, we need a wrapper

for it to work with Lisp System functions. The approach we take is to call

ecs_do_query with a special C System function called lisp_run_system,

and pass the Lisp function (in the form of a Lisp object) as the data param-

eter. The C function constructs a Lisp argument list, and calls the passed

Lisp function for each Entity in an Archetype. We chose to perform the

iteration in C rather than Lisp for efficiency.

The lisp_run_system does most of the work of determining the types

and sizes of the Components bound for a whole Archetype up-front. The only

work it needs to do for each Entity is to put its ID and bound Components

72

into the argument list, and call the Lisp System function.

Previously, we used a Lisp macro to generate ecs-get calls that ran for

every Entity, so lisp_run_system only needed to pass the Entity ID to the

Lisp System function. This was unnecessarily inefficient, since it would have

to perform the same type checks and logic to get the right Component value

for every Entity in an Archetype.

6.3.3 Systems

A System is an Entity with the Query, System and SystemData Compo-

nents. The ecs_new_system function is a convenient wrapper that takes the

values for those Components, and adds them to a new Entity, as shown in

Listing 6.7. That listing also shows how we add Phase Components (see

subsection 5.3.1), using the ecs_add API. We add the same Components

to Systems written in Lisp, such as the functionally equivalent one in List-

ing 6.8; note how concise this definition is, especially in comparison to the

equivalent C code, spread across Listing 6.6 and Listing 6.7.

Listing 6.7: Movement System initialisation.

Object move_system = ecs_new_system(lisp ,

LISP_EVAL_STR(lisp , "(select␣(or␣RelPos␣Pos)␣Vel)"),

move , NULL);

ecs_add(world , move_system ,

ecs_lookup_by_name(world , SYM(lisp , "Physics")));

Listing 6.8: Lisp Movement System initialisation.

(ecs-new-system

(Physics)

(and (or RelPos Pos) Vel)

(pos vel)

(let ((delta (get-delta)))

(set-v2 pos

(+ (v2-x pos) (* (v2-x vel) delta))

73

(+ (v2-y pos) (* (v2-y vel) delta)))))

System scheduling works as described in subsection 5.3.1 (see Listing 6.9).

The “manual” function call to execute a Phase has the advantage of making

it simple to integrate ECSQL-based Systems with code from other libraries,

such as the begin/end drawing calls from RayLib, in this example.

Listing 6.9: The main loop of a basic ECSQL game.

Object physics_query =

LISP_EVAL_STR(lisp ,

"(select␣System␣Query␣SystemData␣(has␣Physics))");

Object graphics_query =

LISP_EVAL_STR(lisp ,

"(select␣System␣Query␣SystemData␣(has␣Graphics))");

ecs_do_query(lisp , physics_query ,

run_matching_systems , NULL);

/* ... */

while (! WindowShouldClose ()) {

ecs_do_query(lisp , physics_query ,

run_matching_systems , NULL);

BeginDrawing ();

ecs_do_query(lisp , graphics_query ,

run_matching_systems , NULL);

EndDrawing ();

}

This approach was extremely simple to implement, and sufficient for our

use-case. It would also be amenable to parallelisation, since Systems with

the same Phase Component could theoretically run concurrently.

6.4 Lisp

As explained in section 3.2, our plan was to use the power of Lisp, especially

its macro system, to implement a high-quality Query language with minimal

wasted effort. We also decided to apply this thought process to the Lisp

implementation itself. Macros are such a powerful language feature that

74

Lisp “can be bootstrapped up from essentially nothing” [16, p. 13] using

them. This meant we could implement an evaluator for an excruciatingly

simple language in C, and build the rest of the features of a useful language

with macros.

6.4.1 Object Representation

To support dynamic typing, it must be possible to represent a value of any

type with a fixed-length value. We researched two existing approaches. En-

gelen [8, p. 7] uses NaN boxing, with a 64-bit value either holding a valid

double-length floating point value or a pointer to a value in memory, stored

in the unused bits of a NaN floating point value. Queinnec [35, p. 391] uses

the least significant bit to indicate whether a 32-bit object contains a 31-bit

integer, or a pointer to an object in memory.

We chose to use a tagged union representation (see Listing 6.10 and List-

ing 6.11). In this scheme, we use a 5-bit “type tag” to represent the type of

the object, and use the remaining 59 bits for type-specific data. This has the

advantage that we only need the immediate value of an object to determine

its type, so type checks don’t need to read memory.

One issue with the C type definition that we couldn’t fix is that only

integer types can be bit fields. As a consequence, we have to represent the

tag as a u8, even though we have an enumeration type, ObjectTag, for this

purpose.

Listing 6.10: Our Lisp Object Memory Layout

+-------------------------------+------------------------------+

<----------------------Data (59b)-------------------------><typ >

<-------Entity (32b)-----------><---Gen (16b) - - >00000000000 <typ >

000000000000000000000000000 < - - - - - - - - Integer (32b)---------><typ >

000000000000000000000000000 < - - - - - - - - - Float (32b)----------><typ >

<-----------Index (43b)-----------------><-Metadata (16b)><typ >

75

Type Metadata In Memory
string Length Characters
symbol Name Length Characters
pair Length (2) The car and cdr.
closure Length (2) Body (pair)
vector Length Contents
struct Struct type Struct members

Table 6.1: In-Memory Lisp Object Representations

Listing 6.11: Lisp Object C Type Definition

enum ObjectTag {

OBJ_NIL_TAG = 0, OBJ_STRING_TAG , /* ... */

OBJ_CLOSURE_TAG , OBJ_ENTITY_TAG

};

#define OBJ_TAG_LENGTH (5)

typedef union Object {

u64 bits;

struct {

u8 tag : OBJ_TAG_LENGTH;

u64 val : 59;

};

struct {

u8 : OBJ_TAG_LENGTH; /* enum ObjectTag */

u32 metadata : 16;

/* Must be signed to support indirect addressing */

i64 index : 43;

};

struct {

u16 : 16;

u16 gen;

EntityID entity;

};

} Object;

static_assert(sizeof(Object) == sizeof(u64));

For types that can’t fit within these 59 bits, we store an index into Lisp

memory (see subsection 6.4.3), with some metadata specific to each type.

The types, metadata, and format in memory are listed in Table 6.1.

We initially tried to use the full 59 data bits to represent floating-point

76

numbers and signed integers, but ran into some strange bugs, so we restricted

those to 32 bits. The numbers of bits used to represent Entities and in-

memory object metadata were chosen mostly arbitrarily.

At first, we did not have an explicit type definition for the Lisp Object

type. Instead, we just defined Object as an alias for u64, and used shifting

and masking operators to pack and unpack the contents of the object. We

did this because we couldn’t work out how to implement this representation

using bit fields. That approach was extremely error-prone, and we were

fortunately able to convert to this implementation later on.

We treat the val struct member as a typeless buffer, and directly copy

the bytes of object data in and out of it. This approach was retained from

the code that worked with the old type definition, and we saw no reason to

change it.

It is important for the Lisp eq operator to be efficient, since it is used

often, both in the implementation, and actual Lisp code. This representation

allows us to implement eq with a literal equality test in C, which is about as

cheap as possible.

Listing 6.12: Lisp eq operator.

static inline bool EQ(Object x, Object y) {

return x.bits == y.bits;

}

Symbols

We represent symbols by storing string objects that contain their names,

then replacing the string type tag with the symbol type tag. This allows two

symbols with the same name to remain distinct, by storing the name string in

two distinct locations in Lisp memory. However, this is usually undesirable.

77

The default behaviour (for example, when reading), is to “intern” sym-

bols, adding them to the Lisp environment’s symbol table [13, § 8.4]. A

symbol’s name is looked up in the symbol table, and added if it is not yet

there. A symbol table entry contains the unique “interned” symbol with a

given name.

There are situations when Lisp programmers want to generate a symbol

that has certainly never been used before, for example, when writing certain

macros [13, p. 166]. Our implementation makes this simple, since we can just

replace the type tag of a newly-stored string with that of a symbol. This is

how our make-symbol Lisp primitive is implemented.

Closures

Closures are callable Lisp functions. A closure is represented as a list, con-

taining the lexical context in which it was created, the function argument

list, and the function body.

Primitives

Primitives are Lisp functions implemented in C. Each primitive has a name

symbol, and the actual representation of a primitive function object is that

symbol, with the type tag replaced by the primitive type tag. Primitive

identifier objects are used as keys in a look-up table that stores the argument

type-spec and function pointer for each primitive.

Structs

Listing 6.13: A 2D Vector Lisp Struct

(defstruct v2

(x f32)

78

(y f32))

When a struct type is defined in Lisp, it is assigned an ID, which is stored

in the metadata fields of structs of that type. This allows us to have up to

216 Lisp struct types, which is more than enough.

We initially implemented structs as vectors of Lisp objects, one for each

member. This was easy to implement, but was memory-inefficient since we

didn’t need all the type information for every struct member, because each

member has a known, fixed type.

In our current implementation, Lisp structs have the same memory layout

as C structs with equivalent type declarations. As a result, Lisp and C code

can work with structs stored in the exact same format. This is extremely

valuable because it allows Lisp Systems to directly manipulate data stored

in the ECS Component store.

To match C’s struct memory layout, struct members are packed together,

in the order they were declared in the struct, with padding inserted where

necessary so that each member has adequate alignment. Where possible,

struct members are stored as just their raw data. For example, the struct in

Listing 6.13 occupies 8 bytes, 4 for each float.

Each getter and setter method performs the necessary boxing and un-

boxing operations to abstract away the underlying representation of struct

members.

We mostly implemented support for Lisp struct definitions in struct.lisp.

The main part of this feature implemented in C was the --struct-* helper

primitives, which perform low-level manipulation of Lisp object representa-

tions, which is not possible within the Lisp code itself (see Appendix A). We

took this approach because implementing this feature involved a lot of com-

plex Lisp code generation, which would have been much more challenging to

79

implement without using Lisp macros.

We store metadata for each Lisp struct type, such as its size, and the

types of its members, as a Lisp vector. This is easier to work with in Lisp

code than an opaque C data structure, and we rarely need to use it in C

anyway. Ideally, we would represent this metadata as a struct, but this isn’t

possible because we need to use it in the code that implements structs in the

first place.

6.4.2 Parser and Printer

The lexer and parser were mostly trivial to implement, at scarcely 100 lines

each. They operate on FILE* streams, so the same code works for reading

input from the user (standard input), files and even strings thanks to the

POSIX fmemopen() function.

The print family of functions are meant to produce a printed represen-

tation of a given object. We implemented a printer in C and Lisp, primarily

to demonstrate how much more concise an equivalent function can be in

Lisp. The Lisp printer does fall back to the C printer for primitive types like

integers, which it cannot print.

6.4.3 Memory and Addressing

Lisp memory is addressed with 43-bit values (see subsection 6.4.1). These

values are used as indices into a large, contiguous array of 64-bit memory

cells. Most Lisp data is stored in increments of 64 bits (the size of 1 object),

so allocating data like seemed like a reasonable approach. This does waste

up to 7 bytes per allocation that isn’t an integer number of cells, but those

are a minority.

80

Memory is allocated linearly. There is a pointer to the start of the free

region, and each time an allocation is requested, the pointer is moved forward

by the amount requested (plus some padding for alignment). This was easy

to implement, though there is currently no way to reclaim memory that is no

longer in use, so eventually the system runs out of memory and halts. For-

tunately, the memory allocation rate is low enough that this doesn’t happen

for a decently long while, especially if there are no Lisp systems running. If

we had more time, an obvious first step would be to implement a garbage

collector (see section 9.1).

One major problem with this approach was that it provided no mechanism

for referencing data stored outside Lisp memory, since 43 bits is insufficient

to store a pointer. This would have meant Lisp code could not directly

manipulate Component data stored in ECS Columns. We considered copying

the data back and forth each time we wanted to change it, but this would

have been awkward to implement, even if we hid it behind primitives and

macros. Instead, we implemented a scheme for storing full-size pointers in

Lisp memory.

Though 43 bits is insufficient to store a pointer, it was more than we

needed for indexing Lisp memory. Additionally, we only needed to use pos-

itive values to represent indices into memory. Given these properties, we

devised a simple scheme for storing pointers: If an index is negative, negate

it, and the cell at that (positive) index contains a pointer to the data. This

adds one check to every normal memory access, but considering the check

and branch should compile to around 2–3 instructions, the extra computa-

tion is inconsequential, relative to the other, much less efficient parts of the

Lisp implementation.

81

6.4.4 Error Handling

We implemented the wrong primitive described in subsection 5.4.6 using C’s

setjmp and longjmp functions. These are the closest thing to exceptions

in the language. We call setjmp at the start of the REPL function, with

a jmp_buf (that stores where setjmp was last called) stored in the Lisp

environment data structure. When an error occurs, the wrong function is

invoked, either in C or Lisp, and it calls longjmp to unwind the stack back

to the start of the REPL function.

This design makes the simplifying assumption that Lisp errors only occur

in the REPL. They are certainly more likely to happen there, but a more

robust solution would have been preferable, since the assumption is broken

by running the REPL in a separate thread from the rest of the game (see

section 5.6).

6.4.5 Scopes

We have global scopes/namespaces for variables, functions, macros and structs.

These are all implemented as hash-maps from symbols to the relevant type

for each (data for variables, primitives or closures for functions and macros,

struct metadata for structs). The defname primitive provides a mechanism

for Lisp code to add a definition for a given symbol to any of these global

namespaces.

Local variable scope is implemented as a stack of association lists, itself

represented as a list, with the top of the stack at the front of the list. Variable

lookup works by first searching for the name in local scope, top to bottom,

then searching in global scope. For example, the code in Listing 6.14 would

have a local scope represented as shown in Figure 6.1.

82

(((a . 2) (b . 3)) ((c . 4)))

Figure 6.1: The list structure of a local variable scope.

Listing 6.14: Lisp variable scope example.

(let ((c 4))

(let ((a 2) (b 3))

(* a b c)))

When a closure is created, it is given a reference to the local scope at that

point. Since scopes are built with cons cells, allocated in Lisp memory, they

can persist after the function where they were created. This made it trivial

to implement lexical closure scope correctly.

6.4.6 Evaluation

The lisp_evaluate function attempts to evaluate any Lisp object of any

type. There are 4 main cases for how objects are evaluated: literals, variables,

applications and special forms. A literal is anything that is neither a list nor

a symbol, and evaluates to itself. Symbols are interpreted as variable names,

and are looked up as described in subsection 6.4.5. They evaluate to the

bound variable value, in the current context.

The special list forms are listed in subsection 5.4.8. Each is evaluated

according to the rules in that section.

If a list form isn’t special, the evaluator treats it as a function application.

The first element of a function application form is the name of the function,

83

and the remaining elements are its arguments. The function application

evaluation procedure is shown in algorithm 3. The arguments are evaluated

in the current context, and the called function is evaluated in a separate

context.

Algorithm 3: Function Application Form Evaluation

Input: fname; /* Function name. */

Input: argforms; /* Argument form list. */

Input: context; /* Current evaluation context. */

fn ← value for fname in function namespace;
arglist ← result of evaluating argforms in the input context;
if fn is a primitive then

if arglist matches fn’s typespec then
return result of passing argforms to fn’s C function.

else
Raise an exception;

end

else
bindings ← List of pairs of fn’s parameter names and elements
of arglist;
if binding failed then

Raise an exception;
end
return result of evaluating fn’s body with bindings as the lexical
context.

end

For argument list binding, we use a trick from Engelen [8, p. 15]: Binding

initially pairs up elements of the parameter and argument lists; when the last

element of either is reached, if it is not nil, the remainder of the other list is

bound to it. As a result, we can use the dot operator to define functions that

take variable numbers of arguments, or bind the elements of a list to multiple

function parameters. The following examples illustrate this functionality.

* (defun max (a . as)

(if (and as

(< a (max as)))

84

(max as)

a))

* (max 1 2 3)

3

* (let ((args (list 1 2 3)))

(funcall #'+ . args))

6

6.4.7 Macro Expansion

We kept the macro expansion procedure shown in algorithm 2 simple for

illustrative purposes. There were additional issues we needed to tackle to

produce a correct implementation.

First, macros can expand into expressions containing more macro expres-

sions, so we have to iteratively expand each expression. We compare an

expression to the result of applying macro expansion to it, and stop when

they are the same.

We also encountered an unexpected exception to the rule of macro ex-

pansion: the argument lists of lambda expressions are never expanded, even

if they aren’t quoted. In Common Lisp, lambda is a macro Graham [13,

p. 402]. We could have implemented a lambda macro of our own, that could

generate a form that would protect the argument list from expansion, such

as a closure. However, we found it more straightforward to simply hard-code

the exception into the macro expansion code itself.

6.4.8 Documentation Strings

One useful piece of feedback we got from evaluation day was that this system

would be easier to use with a tutorial or documentation. In response, we

implemented support for documentation strings [13, p. 100]. The describe

85

function allows the user to access the documentation string of any object

that has one (see Listing 6.15).

Since there is some common information that every documentation string

for certain types of object would contain, such as the types of struct mem-

bers, we implemented some macros to automatically generate portions of the

documentation strings for those objects.

We implemented this feature entirely in Lisp.

Listing 6.15: Documentation strings example.

* (describe 'v2)
v2

symbol

A struct type.

Members:

- x: f32

- y: f32

* (describe 5)

5

i32

* (describe 'describe)
describe

symbol

Prints some information about the supplied OBJECT.

This comprises its value , its type , and its

docstring if it has one.

Function arguments: (object)

86

Chapter 7

Project Management

In this chapter, we evaluate how we managed the development of the project.

We also perform a risk evaluation, in the context of the approach we decided

on.

7.1 Project Progress

In November, we produced the schedule shown in Figure 7.1 for the Progress

Report. At that point, we still expected the language to have limited ex-

pressive power, and a static type system, so we thought it would make more

sense to implement the ECS first. However, after deciding to use Lisp as the

basis for the language, we realised it would make more sense to implement

the Lisp interpreter first; for one thing, this allowed us to use Lisp objects to

store Entities and Entity names. As a result, we immediately deviated from

the original timeline.

Based on Figure 7.2, we believe we worked at a consistent pace throughout

the development of the project. We ended up slightly behind the expected

progress line (with an expected completion date of the 15th of March, the

87

40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Oct 2023 Nov 2023 Dec 2023 Jan 2024 Feb 2024 Mar 2024 Apr 2024

Startup

Writing Specification

Specification Deadline

Research

Planning

ECS Research

Language Research

Writing Progress Report

Progress Report Deadline

Design

ECS Design

Language Specification

Implementation

Automated Testing

Entities

Components

Systems

Queries

Lexer and Parser

Type System

Code Generation

Asynchronous REPL

Extensions

Live Monitoring

Serialisation

Profiler

Parallel System Scheduling

Parallel System Computation

Optimised Code Generation

Remote Control over Network

Delivery

Gameplay Demo

Preparing Presentation

Evaluation Day

Presentation Week

Final Report

Writing Final Report
Oct 2023 Nov 2023 Dec 2023 Jan 2024 Feb 2024 Mar 2024 Apr 2024

Figure 7.1: Project Timetable, created in November

88

0

5

10

15

20

25

30

35

40

45

50

04/01 18/01 01/02 15/02 29/02 14/03 28/03

Ta
sk

s

Date

Burn-Down Chart

Actual

Expected

Figure 7.2: Project Burn-Down Chart.

89

Factor Harm Probability Risk Mitigation
Hardware Failure 3 3 9 Daily Backups
Schedule Slippage 1 5 5 Flexible scope
Regression Bugs 3 4 12 Automated testing
Remote Code Execution 5 2 10 Input validation

Table 7.1: Risk Management Plan Summary

day of our presentation) because we were more preoccupied by other commit-

ments in week 1 of term 2, and we were still planning our approach at that

point. This graph is only an approximation, and the sudden drop around

the 14th of March happened because we looked back at our still-open TODO

items in the week before the presentation, and realised a lot of them were

either already complete, or no longer relevant, so we closed almost all of them

at once. We took a break after the presentation, hence the delay before the

we closed the final task.

7.2 Risk Management

At the start of the project, we performed a risk analysis, and established

a plan to mitigate or prevent each risk factor (see Table 7.1). We rated

the harm and probability of each risk factor on a 1–5 scale, and calculated

the risk of each factor by taking the product of these ratings. We can now

evaluate the success of this plan.

We didn’t encounter any notable hardware failures, and we didn’t imple-

ment a network interface for ECSQL, so we didn’t have to implement our

plan for preventing remote code execution. However, on a related note, it

would still make sense to take precautions like removing the REPL from the

release build of a game, to prevent players from gaining complete control over

it.

90

As explained in section 4.4, we didn’t implement proper automated test-

ing, so it was slightly harder for us to detect bugs. Fortunately, the interactive

development approach we adopted instead meant that when we did find a

bug, we could fix it quickly, in most cases. One occasion when this approach

didn’t work as well was when we discovered a critical bug on the morning

of evaluation day. However, that bug occurred because we were rapidly pro-

ducing new code, and stopping to create tests would have slowed us down,

which might have prevented us from fixing it before our time slot.

We already explained the flexible scope of our project in section 4.3.

Thanks to it, we were able to accommodate an unexpectedly high workload

during term 1, by simply dropping some of the less valuable extensions,

and moving the whole development timeline later. As a result, we carried

out most of the development work in term 2, when we had a much lower

workload outside the project, and could consequently make rapid progress.

This also gave us time to carry out rigorous research and design for the MVP,

which was essential to the Waterfall methodology we used to implement it.

Overall, this risk mitigation plan was a success.

91

Chapter 8

Results & Evaluation

We now consider the results of the project, with a focus on theoretical and

concrete use-cases for the system we have produced. We also evaluate the

success of the project, with regard to our objectives.

8.1 Example Application

The aim of this project was to produce a game development tool, so we

decided the best way to demonstrate the result was to create a “game” using

it. This demo has the following features:

• 2D particle simulation, with inelastic collisions.

• Three major Entity categories (“species”), distinguished with Tag Com-

ponents: Dwarf, Elf and Goblin.

• Default parameters for instances of each species.

• An initial scene, defined in Lisp (see examples/planets-scene.lisp).

• Parameter viewing functionality.

92

• Support for scene hierarchies, with relative motion.

To compile and run the system, run the following commands:

/ecsql $ mkdir cmake && cmake -S . -B cmake

/ecsql $ cmake --build cmake -j

/ecsql $ cmake/Ecsql

8.1.1 C Systems

The demo includes the following set of C Systems, implemented in main.c:

Movement Moves Entities with Pos (position) and Vel (velocity), as shown

in section 6.3.

Edge Collisions Bounces Entities off the edges of the screen.

Entity Collisions Bounces Entities off each-other. This is a “pairwise”

System, a variant that has two Queries, and runs a System function

on each distinct pair of Archetypes where one Archetype matches each

Query.

Point Gravity When middle click is held, all Entities will accelerate to-

wards the position of the mouse cursor.

Drawing Draws a circle at the position of each Entity that satisfies the

Query (and Pos (opt Colour) Radius). For Entities with no Colour,

it defaults to white.

8.1.2 Scene

Initially, there are no Entities that match the drawing System’s Query, so

the window is blank. We can load in an initial set of Entities by loading the

93

Figure 8.1: Initial Demo Scene

demo.lisp script, which runs all of the scene setup code for this subsection,

the result of which is shown in Figure 8.1.

Listing 8.1: Loading demo.lisp.

* (load "examples/demo.lisp")

The red, blue and green circles in Figure 8.1 have the Dwarf, Elf and

Goblin Tags respectively. These Components are still Entities, so we can

add any Components we like to them, as shown in Listing 8.2.

Listing 8.2: Creating the Goblin template.

(defvar col-green (make-colour 0 255 0 255)) ; RGBA

(ecs-add* (defcomponent Goblin nil)

(Colour = col-green)

(Radius 5.0)

(Mass 0.5))

When we then create “normal” Entities, they can inherit the values of

these Components using the : operator in the ecs-add* DSL (see subsec-

tion 5.5.2). The code in Listing 8.3 creates 100 Entities, each at an offset

94

position from the last, cycling between creating a Dwarf, an Elf or a Goblin.

Each Entity inherits Radius, Colour and Mass from its species Tag Compo-

nent. We also add the value of species as a Component, using the expr

form.

Listing 8.3: ECS Scene Creation.

(let ((species-vec (vector Dwarf Elf Goblin)))

(dotimes (i 100)

(let ((species (aref species-vec

(% i (length species-vec))))

(screen-width (get-screen-width))

(screen-height (get-screen-height)))

(ecs-add* (ecs-new)

(expr species)

(Pos (+ 0.0 (% (* 20 i) screen-width))

(+ 0.0 (% (* 30 i) screen-height)))

(Vel (* 20.0 (+ 1 i)) (* 15.0 (+ 1 i)))

(Bounce 0.8)

(Radius : species)

(Colour : species)

(Mass : species)))))

8.1.3 Queries & Lisp Systems

The main novel feature of ECSQL is the ability to run one-off, program-

matic Queries that can arbitrarily modify the state of Entities. Given its

importance, we will highlight some examples.

Listing 8.4: Colour all Dwarves and Elves yellow (see Figure 8.2).

(ecsql (and Colour (has (or Dwarf Elf))) (colour)

(set-colour colour

255 255 0 255))

Listing 8.5: Move all Entities towards (200, 200) (see Figure 8.3).

(ecsql (and Pos Vel) (pos vel)

(set-v2 vel

(- 200 (v2-x pos)) (- 200 (v2-y pos))))

95

Figure 8.2: Dwarves and Elves coloured yellow.

Figure 8.3: Entities Converging to (200, 200).

96

We already showed a complete example of a movement System in List-

ing 6.8, but we can define a wide variety of Systems in Lisp. The Pos2RelPos

System in Listing 8.6 allows us to create Entities with positions relative to

other Entities. For example, the small white Entity is at the same position

relative to the large orange Entity (named Sun) in every example screenshot

in this section. This is achieved using the Parent Component, which holds

a reference to the parent Entity, and the RelPos Component, which stores

the Position of an Entity relative to its Parent. This System sets the value

of the Entity’s normal Pos Component, so it will be displayed at the correct

position by the drawing System.

Of note is that the movement System in Listing 6.8 actually uses RelPos:

with the Query (and (or RelPos Pos) Vel), it will bind RelPos if an En-

tity has it, or Pos if not. This means a child Entity’s Vel Component is also

considered relative to the parent Entity.

Listing 8.6: Scene Hierarchy in Lisp.

(defun hierarchy-pos (e)

(if (and (ecs-has e Parent) (ecs-has e RelPos))

(let ((pos (ecs-get e RelPos)))

(v2-add pos (hierarchy-pos (ecs-get e Parent))))

(ecs-get e Pos)))

(ecs-new-system

(Physics (name 'Pos2RelPos))
(and Pos (has RelPos))

(abs)

(copy-v2 abs (hierarchy-pos entity)))

(ecs-add* (ecs-new) ; Child Entity

(Parent = (ecs-resolve 'Sun)) ; Big orange Entity

Pos

(RelPos 20.0 20.0)

(Radius 5.0))

97

Figure 8.4: Entity Position Labels.

Listing 8.7: Display the Pos of each Entity (see Figure 8.4).

(ecs-new-system

(Graphics) (and Pos Radius) (pos radius)

(draw-text (to-string (list (floor (v2-x pos))

(floor (v2-y pos))))

(+ (v2-x pos) radius)

(- (v2-y pos) radius) 8))

Listing 8.8: Display an Entity’s ID when the user clicks it (see Figure 8.5).

(ecs-new-system

(Graphics) (and Pos Radius) (pos radius)

(when (and (is-mouse-down 'left)
(point-in-circle

pos radius

(make-v2 (float (get-mouse-x))

(float (get-mouse-y)))))

(draw-text (concat "Clicked:␣"

(to-string (ecs-id entity)))

10.0 10.0 20)))

8.2 Possible Use-Cases

Considering the examples in section 8.1, we have identified some potential

use-cases for ECSQL, or a system like it, in the context of a small team

98

Figure 8.5: Displaying the ID of the clicked Entity.

ECSQL

C

Lisp

Define C Systems

Add Lisp Primitives

Ad-Hoc Queries

Define Lisp Types & Components

Define Lisp Systems

Engine Developer

Tool Developer

Level Designer

Game Mechanic Designer

Figure 8.6: Potential Use-Cases of ECSQL in a Game Studio.

99

developing a game (see Figure 8.6).

Engine Developer These are the only users who should have to write na-

tive code; this would most likely be to write Systems that need to run

efficiently, or to add primitive functions to the Lisp environment.

Level Designer Less technically-oriented team members like level design-

ers probably wouldn’t want to use a textual language like ECSQL.

However, it is at least more approachable than C, and they could still

benefit indirectly from tools implemented using ECSQL.

Tool Developer As we demonstrated in section 8.1, ECSQL allows us to

implement interactive development tools concisely. The lower perfor-

mance compared to native code would be inconsequential in this case,

since it would only have to run on the developers’ workstations.

Game Mechanic Designer These users could use Lisp Systems to exper-

iment with the design of a game mechanic; they could write an imple-

mentation, test it, then re-write it, and see the change without having

to restart the game. The high expressive power of Lisp makes it espe-

cially suitable for this style of iterative design, because the developer

can implement changes quickly.

8.3 Requirements Evaluation

We have evaluated the extent to which our project has met the requirements

set out in section 3.3 in Table 8.1.

100

Table 8.1: Requirements Evaluation

Requirement Met Relevant Comment

1a (M) ✓ ✓ Entities have unique IDs.

1b (M) ✓ ✓ Lisp & C structs, or single values.

1c (M) ✓ ✓ Systems are executed based on which of

a set of Phase Components they have

(see subsection 2.1.1). These Components

can be manipulated like any other at run

time.

1d (C) ✓ ✓ Entities are stored in Archetypes.

1e (S) × ✓ While it is possible to store Relationships,

and add them as Components, advanced

Relationship functionality (such as Joins)

seen in Flecs [27] was not implemented.

1f (S) × ✓ No consideration was given to making En-

tity store accesses thread safe.

2a (M) ✓ ✓ It is possible to create and delete Entities

within Lisp.

2b (M) ✓ ✓ Adding Components is made concise with

the ecs-add* macro.

2c (M) ✓ ✓ One-off Queries and Systems can display

the values of Components in the terminal

or game window, and manipulate them

programmatically.

2d (M) ✓ ✓ Filtering by Component values is easily

achieved by wrapping the code of a trans-

formation in an if block.

101

Requirement Met Relevant Comment

2e (M) ✓ ✓ Systems are Entities so they can be listed

with Queries. They can be started and

stopped by adding and removing Phase

Components.

2f (S) × × Native compilation was not implemented.

2g (C) × × Bytecode compilation was not imple-

mented.

2h (S) ✓ ✓ It is trivial to define Systems and func-

tions (at run-time) within the Lisp envi-

ronment.

2i (S) ✓ ✓ See REPL implementation.

2j (S) ✓ ✓ Due to Lisp being a functional language

with macros, the code can be highly terse

and ergonomic (at least for those familiar

with Lisp).

2k (S) ✓ ✓ There are simple APIs for defining new

Lisp primitives and Systems in C.

2l (S) × ✓ The quality of error messages varies, and

they do not show where an error occurred.

2m (S) ✓ ✓ We can monitor the result of a Query by

writing a System in Lisp that displays its

results (see Requirement 2c).

2n (S) × × The language has a dynamic type system,

with no explicit provision for compile-

time type checking.

102

Requirement Met Relevant Comment

2o (C) × × “Compose systems together to build more

complex ones” was not a sufficiently con-

crete Requirement for an implementation

to be designed. Common behaviour be-

tween Systems can simply be extracted

into functions.

2p (C) × ✓ Systems are executed entirely serially.

2q (C) × × There is no ECSQL compiler.

3 (S) × ✓ There is no formal test suite.

4 (S) ✓ ✓ Though the bouncing balls demo could

hardly be called a game, it served its pur-

pose of demonstrating the capabilities of

ECSQL in the presentation.

5 (C) × × There is no ECSQL compiler, so there

would have been no benefit to embedding

ECSQL code into native binaries.

6 (C) × ✓ There is no profiler.

7 (C) × ✓ We can print the values of many Compo-

nent types, so full game state serialisation

wouldn’t be that much more work to im-

plement.

8 (C) × ✓ Sending/receiving ECSQL commands

over the network was not implemented.

We met all of ourMUST requirements, and six of our SHOULD require-

ments. Of our unmet requirements, five were written with the assumption

103

that we would implement a compiler for a statically-typed language (as op-

posed to an interpreter for a dynamically-typed one), and others were either

too vague to implement, or ended up not being relevant, given the direction

of the project took. As a result, we would not necessarily consider it a failure

that we did not meet them. These results are summarised in the table below.

Rating Must Should Could

Total 8 12 9

Relevant 8 10 5

Completed 8 6 1

In addition to the features specified in the requirements, we added the

following features to improve the final product:

Components and Systems as Entities This approach composed well with

the required Entity operators to make the whole system more flexible.

Documentation Strings Our Lisp implementation supports documenta-

tion strings for functions, macros, variables, structs, and Components.

Where applicable, these are automatically generated with macros.

Lisp Standard Library We created a small standard library of Lisp func-

tions and macros, based on the ones in Common Lisp. Some notable

ones are reduce (fold), case (switch) and gensym (generates a new

symbol).

On the whole, we consider the project to be a success.

104

Chapter 9

Conclusions

We have achieved our initial goal of creating a general-purpose, interactive

game development tool. ECSQL allows developers to create and manipu-

late Entities as they see fit, incrementally develop new features for their

games, and even implement more high-level, specialised tools at an other-

wise infeasibly fast pace. Since all the state of a game is in a standardised

format (represented with Entities and Components), developers can apply

these powerful operations to all aspects of their games. The high-level, con-

cise syntax of Lisp allows them to access all this power easily, and the REPL

lets them do all this without even restarting the game.

This system is ECS-based, so it comes with the same limitations as most

ECS frameworks face. For one thing, it would have limited applicability

outside games. It also lacks the flexibility of a full-on programming paradigm,

such as OOP [28]. On the other hand, within the narrow field of game

development, as we have shown, it is tremendously useful.

Most popular Entity Component System libraries and Lisp implemen-

tations have been heavily optimised. By comparison, our implementations

are highly naive, with little or no attempt at optimisation, beyond the basic

105

architecture of the Entity store and Lisp object representation. Their perfor-

mance would almost certainly be orders of magnitude slower. On the other

hand, ECSQL fills such a different niche from these existing systems that

the use-cases where we could draw a direct performance comparison would

not make use of its unique features. Due to this, we did not consider it

worthwhile to analyse its performance in comparison to existing solutions1.

Though we were too busy in term 1 to spend much time on the project,

we still made the mistake of spending too much time on research. If we

had focused on collecting just the necessary information to start developing,

rather than exploring all potential applications and capabilities of the system,

we might have had time to implement some more extensions, or perhaps even

a basic Lisp compiler.

9.1 Further Work

Based on our unmet requirements, and analysis of the final product, we have

identified some areas where further work would improve the system.

9.1.1 Lisp Implementation

Our Lisp implementation has obvious flaws. To make this system usable for

even semi-serious applications, we would have to remedy them.

Garbage Collection We currently make no attempt to reclaim unused Lisp

memory. Our first, most important step to improve the system would

be to implement a garbage collector. We researched the simplest ap-

1To put it another way, we are not aware of any existing solutions to the same set of
problems that ECSQL solves.

106

proaches, and would have attempted to implement a mark-sweep col-

lector, if any [18, Ch. 2].

Performance We could have implemented a compiler, targeting either a

Bytecode VM or native machine code, to improve performance.

Standard Conformance A “commercial” implementation of a system like

could benefit from conforming to a standard, such as Common Lisp [13],

so users could benefit from existing libraries.

On the other hand, the ways our language differs from Common Lisp are

generally in service of this specific application: for example, the built-in

Entity type and static member types for structs make interoperating

with C “engine” code much easier.

There are also game engines like Godot [20], with custom scripting lan-

guages that integrate with their specific functionality, so this situation

isn’t unprecedented. We also could have used an existing embedded

Lisp interpreter, and an existing ECS, but then they could not have

integrated together as well.

9.1.2 Entity Relations

We found the Entity Relations feature in Flecs [29, Relationships], and its po-

tential applications Mertens [27], compelling, so we attempted to implement

this feature into ECSQL. However, we only implemented a small subset of the

features required for them to be useful, and they would not have been a novel

contribution, so we chose not to make further progress towards supporting

them.

Relationships provide an elegant way to represent some important con-

cepts in games, such as hierarchies, and would have provided a powerful way

107

of writing Queries that manipulate whole sets of related Entities at once. As

such, this feature would have greatly expanded the capabilities of ECSQL,

so we would have liked to implement it if we had more time.

9.2 Self-Assessment

We have implemented an Entity Component System library with an Archetype-

based Component store, an interpreted Lisp system with lexical scope and

macros, and an ECS-based Query language that integrates the ECS library

and Lisp together. We created a small “game” using the system that allowed

us to illustrate its capabilities in an application.

Limitations, such as the unoptimised Lisp interpreter and lack of garbage

collection, make the final product unsuitable as a basis even for moderately

complex games. Despite these, it still effectively demonstrates a novel set of

capabilities that would make it worth refining into a more complete system.

Even in its current state, the product could be of use to a developer that

wanted to create a simple game, either as a prototype to test new mechanics,

or in a small time window like a game jam.

108

Bibliography

[1] Mike Acton. ‘Data Oriented Design and C++’. In: CppCon 2014. 11th Sept.

2014. url: https://youtu.be/rX0ItVEVjHc?si=mMuHCnULl3e2TSyx

(visited on 08/04/2024).

[2] Carter Anderson. Bevy Engine. 10th Aug. 2020. url: https://bevyengine.

org (visited on 19/11/2023).

[3] Atlassian. Agile Project Management. 2024. url: https://www.atlassian.

com/agile/project-management (visited on 08/04/2024).

[4] Attractive Chaos. Klib: a Generic Library in C. 2008. url: http :

//attractivechaos.github.io/klib (visited on 11/04/2024).

[5] Sean Barrett. ‘Immediate Mode GUIs’. In: Game Developer (Sept.

2005), pp. 34–36. url: https://ubm- twvideo01.s3.amazonaws.

com/o1/vault/GD_Mag_Archives/GDM_September_2005.pdf (visited

on 29/04/2024).

[6] Jessica D. Bayliss. ‘The Data-Oriented Design Process for Game De-

velopment’. In: Computer 55.5 (May 2022), pp. 31–38. issn: 0018-9162.

doi: 10.1109/MC.2022.3155108.

[7] Carsten Dominik and Bastien Guerry. Org Mode. 2003. url: https:

//orgmode.org/ (visited on 08/04/2024).

109

https://youtu.be/rX0ItVEVjHc?si=mMuHCnULl3e2TSyx
https://bevyengine.org
https://bevyengine.org
https://www.atlassian.com/agile/project-management
https://www.atlassian.com/agile/project-management
http://attractivechaos.github.io/klib
http://attractivechaos.github.io/klib
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/GDM_September_2005.pdf
https://ubm-twvideo01.s3.amazonaws.com/o1/vault/GD_Mag_Archives/GDM_September_2005.pdf
https://doi.org/10.1109/MC.2022.3155108
https://orgmode.org/
https://orgmode.org/

[8] Robert A. van Engelen. ‘Lisp in 99 lines of C and how to write one

yourself’. 19th July 2023. url: https://raw.githubusercontent.

com/Robert-van-Engelen/tinylisp/main/tinylisp.pdf (visited

on 26/11/2023).

[9] Epic Games. Unreal Engine. 1998. url: https://www.unrealengine.

com/en-US/unreal-engine-5 (visited on 10/10/2023).

[10] Free Software Foundation. GNU Emacs Lisp Reference Manual. Ver-

sion 29.2. 2024. url: https : / / www . gnu . org / software / emacs /

manual/html_node/elisp/index.html (visited on 10/04/2024).

[11] Steven Ganz et al.Revised7 Report on the Algorithmic Language Scheme.

report. R7RS Authors, 13th Feb. 2021. url: https://standards.

scheme.org/official/r7rs.pdf (visited on 10/04/2024).

[12] Duncan Geere. How To to Use Commands in Minecraft. 22nd Sept.

2023. url: https://www.minecraft.net/en-us/article/minecraft-

commands (visited on 29/04/2024).

[13] Paul Graham. ANSI Common Lisp. English. London; Englewood Cliffs,

N.J; Prentice Hall, 1996. isbn: 0133708756.

[14] Paul Graham. On Lisp. Advanced Techniques for Common Lisp. Pren-

tice Hall, 1993. isbn: 0130305529. url: http://paulgraham.com/

onlisp.html (visited on 14/11/2023).

[15] Philip Greenspun. ‘Philip Greenspun’s Research’. 2017. url: https:

//philip.greenspun.com/research/ (visited on 06/04/2024).

[16] Doug Hoyte. Let Over Lambda. 50 years of Lisp. Lulu.com, 2nd Apr.

2008. isbn: 1435712757. url: https://letoverlambda.com/ (visited

on 14/11/2023).

110

https://raw.githubusercontent.com/Robert-van-Engelen/tinylisp/main/tinylisp.pdf
https://raw.githubusercontent.com/Robert-van-Engelen/tinylisp/main/tinylisp.pdf
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.gnu.org/software/emacs/manual/html_node/elisp/index.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/index.html
https://standards.scheme.org/official/r7rs.pdf
https://standards.scheme.org/official/r7rs.pdf
https://www.minecraft.net/en-us/article/minecraft-commands
https://www.minecraft.net/en-us/article/minecraft-commands
http://paulgraham.com/onlisp.html
http://paulgraham.com/onlisp.html
https://philip.greenspun.com/research/
https://philip.greenspun.com/research/
https://letoverlambda.com/

[17] Roberto Ierusalimschy andWaldemar Celes Luiz Henrique de Figueiredo.

Lua. 1993. url: https://www.lua.org/ (visited on 29/04/2024).

[18] Richard Jones, Antony Hosking and Eliot Moss. The garbage collection

handbook: the art of automatic memory management. English. Boca

Raton, FL: CRC Press, 2012. isbn: 1420082795.

[19] Andrew Kravchuk. Gamedev in Lisp. Part 1: ECS and Metalinguistic

Abstraction. 17th Oct. 2023. url: https://awkravchuk.itch.io/cl-

fast-ecs/devlog/622054/gamedev-in-lisp-part-1-ecs-and-

metalinguistic-abstraction (visited on 07/04/2024).

[20] Juan Linietsky and Ariel Manzur. Godot Engine. 14th Jan. 2014.

[21] Adam Martin. Data Structures for Entity Systems: Contiguous mem-

ory. (The images have been broken since late 2022.) 8th Mar. 2014.

url: https://t- machine.org/index.php/2014/03/08/data-

structures-for-entity-systems-contiguous-memory/ (visited on

19/09/2022).

[22] Adam Martin. Entity Systems are the future of MMOG development

– Part 2. 11th Nov. 2007. url: https://t-machine.org/index.

php/2007/11/11/entity- systems- are- the- future- of- mmog-

development-part-2/ (visited on 08/10/2023).

[23] Adam Martin. Entity Systems are the future of MMOG development

– Part 3. 22nd Dec. 2007. url: https://t-machine.org/index.

php/2007/12/22/entity- systems- are- the- future- of- mmog-

development-part-3/ (visited on 08/10/2023).

[24] Sander Mertens. A Roadmap to Entity Relationships. 14th July 2023.

url: https://ajmmertens.medium.com/a-roadmap-to-entity-

relationships-5b1d11ebb4eb (visited on 19/11/2023).

111

https://www.lua.org/
https://awkravchuk.itch.io/cl-fast-ecs/devlog/622054/gamedev-in-lisp-part-1-ecs-and-metalinguistic-abstraction
https://awkravchuk.itch.io/cl-fast-ecs/devlog/622054/gamedev-in-lisp-part-1-ecs-and-metalinguistic-abstraction
https://awkravchuk.itch.io/cl-fast-ecs/devlog/622054/gamedev-in-lisp-part-1-ecs-and-metalinguistic-abstraction
https://t-machine.org/index.php/2014/03/08/data-structures-for-entity-systems-contiguous-memory/
https://t-machine.org/index.php/2014/03/08/data-structures-for-entity-systems-contiguous-memory/
https://t-machine.org/index.php/2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/
https://t-machine.org/index.php/2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/
https://t-machine.org/index.php/2007/11/11/entity-systems-are-the-future-of-mmog-development-part-2/
https://t-machine.org/index.php/2007/12/22/entity-systems-are-the-future-of-mmog-development-part-3/
https://t-machine.org/index.php/2007/12/22/entity-systems-are-the-future-of-mmog-development-part-3/
https://t-machine.org/index.php/2007/12/22/entity-systems-are-the-future-of-mmog-development-part-3/
https://ajmmertens.medium.com/a-roadmap-to-entity-relationships-5b1d11ebb4eb
https://ajmmertens.medium.com/a-roadmap-to-entity-relationships-5b1d11ebb4eb

[25] Sander Mertens. Building an ECS #1: Where are my Entities and

Components. 6th Aug. 2022. url: https://ajmmertens.medium.com/

building-an-ecs-1-where-are-my-entities-and-components-

63d07c7da742 (visited on 09/04/2024).

[26] Sander Mertens. Building an ECS #2: Archetypes and Vectorization.

14th Mar. 2020. url: https://ajmmertens.medium.com/building-

an-ecs-2-archetypes-and-vectorization-fe21690805f9 (visited

on 09/04/2024).

[27] Sander Mertens. Building Games in ECS with Entity Relationships.

7th Apr. 2022. url: https://ajmmertens.medium.com/building-

games-in-ecs-with-entity-relationships-657275ba2c6c (visited

on 19/11/2023).

[28] Sander Mertens. ECS: From Tool to Paradigm. 19th Feb. 2021. url:

https://ajmmertens.medium.com/ecs-from-tool-to-paradigm-

350587cdf216 (visited on 21/11/2023).

[29] Sander Mertens. Flecs: Fast Lightweight ECS. Version 3.2. 2018. url:

https://www.flecs.dev/flecs (visited on 13/11/2023).

[30] Sander Mertens. Making the most of ECS identifiers. 22nd July 2020.

url: https://ajmmertens.medium.com/doing-a-lot-with-a-

little-ecs-identifiers-25a72bd2647 (visited on 18/11/2023).

[31] Sander Mertens. Why it is time to start thinking of games as databases.

6th June 2023. url: https://ajmmertens.medium.com/why-it-is-

time-to-start-thinking-of-games-as-databases-e7971da33ac3

(visited on 19/11/2023).

112

https://ajmmertens.medium.com/building-an-ecs-1-where-are-my-entities-and-components-63d07c7da742
https://ajmmertens.medium.com/building-an-ecs-1-where-are-my-entities-and-components-63d07c7da742
https://ajmmertens.medium.com/building-an-ecs-1-where-are-my-entities-and-components-63d07c7da742
https://ajmmertens.medium.com/building-an-ecs-2-archetypes-and-vectorization-fe21690805f9
https://ajmmertens.medium.com/building-an-ecs-2-archetypes-and-vectorization-fe21690805f9
https://ajmmertens.medium.com/building-games-in-ecs-with-entity-relationships-657275ba2c6c
https://ajmmertens.medium.com/building-games-in-ecs-with-entity-relationships-657275ba2c6c
https://ajmmertens.medium.com/ecs-from-tool-to-paradigm-350587cdf216
https://ajmmertens.medium.com/ecs-from-tool-to-paradigm-350587cdf216
https://www.flecs.dev/flecs
https://ajmmertens.medium.com/doing-a-lot-with-a-little-ecs-identifiers-25a72bd2647
https://ajmmertens.medium.com/doing-a-lot-with-a-little-ecs-identifiers-25a72bd2647
https://ajmmertens.medium.com/why-it-is-time-to-start-thinking-of-games-as-databases-e7971da33ac3
https://ajmmertens.medium.com/why-it-is-time-to-start-thinking-of-games-as-databases-e7971da33ac3

[32] Austin Morlan. A Simple Entity Component System. 25th June 2019.

url: https://austinmorlan.com/posts/entity_component_system/

(visited on 11/04/2024).

[33] Peter Norvig. ‘Design patterns in dynamic programming’. In: Object

World 96.5 (1996).

[34] Robert Nystrom.Game Programming Patterns. Genever Benning, 2014.

isbn: 0990582906. url: http://gameprogrammingpatterns.com (vis-

ited on 11/10/2023).

[35] Christian Queinnec. Lisp in Small Pieces. English. 1st paperback. New

York; Cambridge, U.K; Cambridge University Press, 2003. isbn: 0521545668.

[36] Thibault Raffaillac and Stéphane Huot. ‘Polyphony: Programming In-

terfaces and Interactions with the Entity-Component-System Model’.

In: Proc. ACM Hum.-Comput. Interact. 3.EICS (June 2019). doi: 10.

1145/3331150.

[37] Raysan. Raylib. Nov. 2013. url: https://www.raylib.com/ (visited

on 11/04/2024).

[38] Tcl Community. Tcl Developer Xchange. 7th May 2022. url: https:

//www.tcl.tk/ (visited on 29/04/2024).

[39] Unity Technologies. Entities Package Manual. Version 1.1. Unity Tech-

nologies. 13th Sept. 2023. url: https://docs.unity3d.com/Packages/

com.unity.entities@1.1/manual/index.html (visited on 08/10/2023).

[40] Unity Technologies. Unity Data-Oriented Technology Stack (DOTS).

2022. url: https://unity.com/dots (visited on 19/11/2023).

[41] Unity Technologies. Unity Engine. 8th July 2005. url: https : / /

unity.com/products/unity-engine (visited on 10/10/2023).

113

https://austinmorlan.com/posts/entity_component_system/
http://gameprogrammingpatterns.com
https://doi.org/10.1145/3331150
https://doi.org/10.1145/3331150
https://www.raylib.com/
https://www.tcl.tk/
https://www.tcl.tk/
https://docs.unity3d.com/Packages/com.unity.entities@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@1.1/manual/index.html
https://unity.com/dots
https://unity.com/products/unity-engine
https://unity.com/products/unity-engine

[42] Valve Developer Community. Developer Console. 22nd July 2023. url:

https://developer.valvesoftware.com/wiki/Developer_console

(visited on 29/04/2024).

114

https://developer.valvesoftware.com/wiki/Developer_console

Appendix A

Lisp Primitives

Our Lisp implementation includes a large number of primitives, implemented

in src/lisp/primitives.c. There are three main categories of primitives:

Standard Library These functions are integral parts of the language; they

implement core functionality like vector and string construction. E.g.

eq, /.

Integration These act as wrappers around functions from external libraries.

E.g. fopen, draw-text.

Internal Functions that implement necessary functionality, but are not ex-

pected to be called by the user. E.g. defname, --struct-allocate.

We have listed most of our “Standard Library” and “Integration” prim-

itives in Table A.1. These are the ones that language users are expected to

use, so we have written Lisp documentation strings for them.

115

Table A.1: User-Facing Lisp Primitives

primitive (arguments) Behaviour

* (numbers...) Multiply a list of numbers.

+ (numbers...) Add a list of numbers.

/ (number divisors...) Divide the first argument by each of the

remaining arguments. With one argu-

ment, divide 1 by it.

- (numbers...) Subtract from the first argument all re-

maining arguments. With one argu-

ment, negate it.

cons (car cdr) Create a new pair, with car and cdr as

its components.

car (list) Obtain the car of list, or nil if list

is nil.

cdr (list) Obtain the cdr of list, or nil if list

is nil.

quit () Quit Lisp.

symbol-name (symbol) Get the name of the supplied symbol as

a string.

intern (string) Obtain the canonical symbol with the

given name name.

make-symbol (string) Produce a new, uninterned symbol with

the given name.

make-string (n c) Produce a string length N, with every

character being C.

116

primitive (arguments) Behaviour

make-vector (n v) Produce a vector length N, with every

element being V.

vector Produce a vector containing the argu-

ments.

aref (vector n) Get the nth element of the vector.

aset (vector n value) Set the nth element of the vector to the

supplied value.

eq (a b) Return t iff the arguments are bit-for-

bit the same.

eql (a b) Return t iff the arguments are equal,

handling numbers and strings specially.

assoc (key list) Returns first key-value pair in list

whose car is eq to key, if any, else nil.

length (object) Returns the length of the given list, vec-

tor or string.

to-string (form) Returns the printed representation of

the argument as a string.

type-of (object) Returns the symbol representing the

type of the argument.

type-tag (object) Returns the Object type tag of the ar-

gument (a number). All structs have

the same type tag (OBJ_STRUCT_TAG).

funcall (fn args...) Apply the first argument (function) to

the remaining arguments.

117

primitive (arguments) Behaviour

apply (fn args... arglist) Apply the first argument to the remain-

ing arguments. The last argument is a

list of arguments to pass to the func-

tion.

eval (form) Evaluate the argument form.

read-stream (file) Read one Lisp object from the supplied

file.

fopen (file r/w) Open a file with the given r/w setting.

getc (file) Read a single character from an open

file.

macroexpand-1 (form) Expand the top-level macro in the ar-

gument form, if there is one.

macroexpand (form) Recursively expand out all macros in

the argument form.

wrong (message arg) Signal an error, displaying a message

and the value of the second argument.

size-of (type) Return the number of Bytes necessary

to store elements of the argument type

in a struct.

type-spec-matches (form spec) Returns t iff the supplied form matches

the supplied type spec.

structp (object) Returns t iff the argument is a struct.

struct-metadata (type) Returns reflection data about the given

struct type.

ecs-new () Create and return a new ECS entity.

118

primitive (arguments) Behaviour

make-entity (id generation) Produce an Entity object with the

given id and generation. Not guaran-

teed to be a live entity.

ecs-pair (relation target) Produce a Relation object with the

given relation and target. Not guar-

anteed to be a valid Relation wherein

relation and target are both alive.

make-relation (rel t) Produce a Relation object with the

given Relation r and target Entity t.

Not guaranteed to be a valid Relation

wherein relation and target are both

alive.

ecs-entity (id) Returns the Entity with the argument

ID, if alive. Otherwise, nil.

ecs-destroy (entity) Destroy the supplied Entity.

ecs-get (entity component) Obtain the value of component for

entity. The entity must have

component, and component must have

LispStorage, or an error is raised.

ecs-set (e c v) Set the value (v) of Component c for

Entity e. The entity must already

have component, and component must

have LispStorage. The value must be

of component’s LispStorage type (see

ecs-storage-type).

119

primitive (arguments) Behaviour

ecs-set-name (entity name) Set the name of entity. Names are

not Components, and are used to find

Entities with ecs-lookup.

ecs-lookup (name) Obtain the Entity with the given name,

if it exists.

ecs-has (entity component) Returns t iff entity has component.

ecs-add (entity component) Add component to entity.

ecs-id (entity) Returns the id of entity.

ecs-gen (entity) Returns the generation of entity.

ecs-relation (relation) Returns the Relation type of relation

ecs-target (relation) Returns the target Entity of relation

ecs-new-component Creates a new Component that stores

values of type type.

ecs-do-query (function query) Run function on every Entity match-

ing query. This is the backend to ecsql,

which you should probably use instead.

ecs-register-system (f q) Create a new System (Entity) with the

given System function f and Query q

added. This is the backend to ecs-new-

system, which you should probably use

instead.

ecs-storage-type (component) Obtain the type of Lisp Object stored

by component. If component is a Re-

lation, this will be the same as (ecs-

storage-type (ecs-relation component)).

120

primitive (arguments) Behaviour

get-mouse-x () Get the X coordinate of the mouse cur-

sor on the game window.

get-mouse-y () Get the Y coordinate of the mouse cur-

sor on the game window.

get-screen-width () Get the width of the game window in

pixels.

get-screen-height () Get the height of the game window in

pixels.

get-delta () Get the duration of the last frame as a

floating-point number.

draw-text (text x y size) Draw text at the given X and Y coor-

dinates, at the given size.

is-mouse-down (button) Returns t iff mouse button button is

currently held down. Allowed values of

button: left, right (symbols).

is-mouse-pressed (button) Returns t iff mouse button button was

just pressed. Allowed values of button:

left, right (symbols).

We have documented a few of our “Internal” primitives in Table A.2.

121

Table A.2: Internal Lisp Primitives

primitive (arguments) Behaviour

defname (ns name value) Add a mapping from name to value

in namespace ns, which must be one

of globals, functions, macros or

structs.

ecs-do-query (q f) Run function f on each Entity matched

by Query q (which is represented in

predicate+bindings form).

--struct-register (name) Generate a new struct type ID (see sub-

section 6.4.1), and create a mapping

from that ID to the supplied name (a

symbol).

--struct-allocate (id cells) Allocate the given number of memory

cells (64 bits/cell) to store a struct ob-

ject with the supplied ID.

In addition to the struct registration and allocation primitives, we have

getter and setter primitives for accessing the contents of a struct as raw data,

through a pointer, or as a boxed object. These are named as shown below.

--struct-{get,set}-{vec,val,object}

These functions are deliberately type-unsafe, effectively just providing

thin wrappers around memcpy. We took this approach because the necessary

type information required to perform struct operations is only created when

Lisp structs are defined, at run-time. The macros in lisp/struct.lisp

determine the correct parameters to pass to these functions automatically.

Not even I am supposed to use them directly.

122

	Introduction
	Background and Research
	Entity Component Systems
	Definitions of Terms
	Existing ECS Implementations
	Feature Breakdown
	Entity Relationships

	Domain-Specific Languages
	Lisp
	Macros
	Association Lists
	Lisp Dialects

	Potential Applications
	Graphical User Interfaces
	Console Commands

	ECS Computational Models

	Objectives
	Query Language
	System Architecture
	Requirements Analysis

	Methodology
	Research
	Design
	Development
	Testing
	Tools

	Design
	Entities
	Components
	Component Representation
	Component Storage

	Systems
	System Scheduling
	Entity Names

	Lisp
	Type System
	Structs
	Scopes and Closures
	Macros
	REPL
	Error Handling
	Syntax and Short-Hand Forms
	Core Language and Special Forms
	Macro System
	Primitive Functions
	ECS Lisp APIs

	Domain-Specific Languages
	ECSQL Query Language
	Entity Initialisation
	Primitive Argument Type Specifications

	Asynchronous REPL

	Implementation
	Entities
	Entity Names

	Components
	Adding and Removing Components
	Component-Column Mapping
	Bootstrapping the storage Component
	Lisp Components

	Queries & Systems
	Query Compilation
	Query Execution
	Systems

	Lisp
	Object Representation
	Parser and Printer
	Memory and Addressing
	Error Handling
	Scopes
	Evaluation
	Macro Expansion
	Documentation Strings

	Project Management
	Project Progress
	Risk Management

	Results & Evaluation
	Example Application
	C Systems
	Scene
	Queries & Lisp Systems

	Possible Use-Cases
	Requirements Evaluation

	Conclusions
	Further Work
	Lisp Implementation
	Entity Relations

	Self-Assessment

	Bibliography
	Lisp Primitives

