Reproducible System Configuration
with Nix and Guix

Aidan Hall - 27/08/2024

About Me

* Working in CE — GPU Software

e Studying Computer Science at Warwick

* Purely functional

package manager

i . .
xﬁ N IX Bespoke language

* No dependency hell

A y * Based on Nix

'

* A GNU project

 Scheme (Lisp)

GuiXx

This is the GNU system. HWelcome.
guix-pc login: aidan
Password:

This is the GNU operating system, welcome!

aldan@guix-pc “$ neofetch

)

aidan@guix-pc “% .

aidan@gL
0S: Guix
Kernel:
Uptime:

Packages:

1ix-pc
System x86_64
§.9.1¢
2 mins

Shell: bash 5.1.16

Terminal:

/dev/tty2

142 (guix-system),

1 (guix-user)

CPU: Intel i5-4670K (4) @ 3.800GHZ
GPU: NVIDIA GeForce GTX 1066 3GB

1?—‘ mort q

202MiB / 15935MiB

Package Management

aidan@archlinux ~$ guix package -1 tmux

The following package will be 1nstalled:
tmux 3.4

aidan@archlinux ~$ which tmux
/home/aidan/.guix-profile/bin/tmux

Generations

aidan@archlinux ~$ guix package -1
Generation 1 Aug 22 2024 19:42:19
glibc-locales 2.35

Generation 9 Aug 23 2024 12:50:14 (current)
+ tmux 3.4

aidan@archlinux ~$ guix package -S 1
switched from generation 9 to 1
aidan@archlinux ~$ tmux --version
bash: tmux: command not found

Temporary Environments

aidan@archlinux ~/programming/games$ clang --version
bash: clang: command not found
aidan@archlinux ~/programming/games$ guix shell clang-toolchain

aidan@archlinux ~/programming/games [env]$ clang --version

clang version 18.1.8

Target: x86_64-unknown-linux—-gnu

Thread model: posix

InstalledDir: /gnu/store/dagllmn64ndrqlligmv8cm6pm4s7nxgzd-profile/bin
aidan@archlinux ~/programming/games [env]$

exit

aidan@archlinux ~/programming/games$ clang —--version

bash: clang: command not found
aidan@archlinux ~/programming/games$

Environment Manifest

aidan@archlinux ~/programming/games$ guix shell clang-toolchain cmake \

> —--export-manifest | tee manifest.scm

;5 What follows 1s a "manifest" equivalent to the command line you gave.
+3 You can store it in a file that you may then pass to any 'guix' command
;3 that accepts a '--manifest' (or '-m') option.

(specifications->manifest

(list "clang-toolchain" "cmake"))
aidan@archlinux ~/programming/games$ guix shell -m manifest.scm
aidan@archlinux ~/programming/games [env]$ which cmake; which clang
/gnu/store/1190s400km688nn7cnqlmybOhclxdl5n-profile/bin/cmake
/gnu/store/1190s400km688nn7cnglmyb@hclxdl5n-profile/bin/clang

Home Environment

(home-environment

(packages
(specifications->packages
(List "git" "emacs" "ripgrep")))

(services
(list
(service home-syncthing-service-type)

(service home-dotfiles-service-type

(home-dotfiles—-configuration
(directories '("dotfiles'")))))))

aidan@archlinux ~/dots$ guix home reconfigure home-configuration.scm

Operating System

(operating-system
(locale "en_GB.utf8")

(timezone "Europe/London") (services

(keyboard-layout (keyboard-layout "gb")) (append (list

(host-name "guix-pc") (service openssh-service-type)
(kernel linux) (service bluetooth-service-type)

(service gnome-desktop-service-type)
(service tlp-service-type))

0s —]
(users (cons* (user-account %desktop-services))

(name "aidan")
(comment "Aidan Hall")
(group "users")
(home-directory "/home/aidan")
(supplementary-groups
"'("wheel" "netdev" "audio" "video")))
%base-user-accounts))

(bootloader (bootloader-configuration
(bootloader grub-bootloader)
(targets (Llist "/dev/sdb"))
(keyboard-layout keyboard-Tlayout)))

(file-systems (cons* (file-system
(mount-point "/")
(device (file-system-label "guix-root"))
(type "ext4")) %base-file-systems)))

(packages (append
(specifications->packages
(list "emacs" "man-db" "gnupg" "firefox" "tmux"))
%base-packages))

aidan@quix-pc ~/dots $ sudo guix home reconfigure home-configuration.scm

Closing Remarks

* A new paradigm for

software deployment

e One universal standard
that covers everyone’s

uSe CasSes

HOW STANDARDS PROUFERATE:

(66 A/C (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

17! RiDIcCULoLs!

WE NEED To DEVELOP
ONE UNNERSAL STANDARD
THAT COVERS EVERYONE'S
JSE CFEES, YERH!

SITUATION:
THERE ARE
|5 COMPETING
STANDPRDS.

Image Sources

* https://github.com/NixOS/nixos-artwork/blob/master/log
0/NniX0s.svg

- Tim Cuthbertson

* http://git.savannah.gnu.org/cgit/guix/guix-artwork.git -
Luis Felipe Lopez Acevedo

* https://xkcd.com/927/

https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
http://git.savannah.gnu.org/cgit/guix/guix-artwork.git
https://xkcd.com/927/
https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
http://git.savannah.gnu.org/cgit/guix/guix-artwork.git
https://xkcd.com/927/

Any Questions?

Reproducible System Configuration
with Nix and Guix

Aidan Hall - 27/08/2024

e Purely functional

package manager

2 .
xﬁ N IX * Bespoke language

* No dependency hell

Purely functional: Package installations don’t have
side-effects on other parts of the environment.

Nix expressions are used to specify the configuration
options and dependencies for each package.

Every version of every package is handled in
Isolation: you can have multiple versions of the
same package installed at the same time, if
different packages depend on different ones.

N p * Based on Nix

A GNU project

'
GuiXx

 Scheme (Lisp)

A lot of directly correspondent functionality.

Focus on preserving the user’s freedom: all free
software.

Not just configured, but mostly written in Scheme.

I'll focus on Guix because it's the one I'm more

familiar with, but Nix can do pretty much everything
you’ll see in this talk.

Th@s is the GNU system. Helcome.

guix-pc login: aidan

Password:

This is the GNU operating system, welcome!

aldan@guix-pc “$ neofetch
‘o aidan@guix-pc

Uptime: 2 mins

Packages: 142 (guix-system), 1 (guix-user)

als /dev/tty2
CPU: Intel i5-4670K (4) @ 3.800GHz
GPU: NVIDIA GeForce GTX 1060 3GB
Memory: 202MiB / 15935MiB

aidan@guix-pc % .

The package description languages aren’t limited to
individual package management.

We can also use them to define reproducible
configurations for everything from software
development environments to the entire operating

system!
Lets explore how they work in more detail.

Package Management

aidan@archlinux ~$ guix package -i tmux
The following package will be installed:
tmux 3.4

aidan@archlinux ~S$ which tmux
/home/aidan/.guix-profile/bin/tmux

This feels familiar.

Guix can be installed within another distribution, like
flatpak.

| didn’t need to install as root: packages are installed
In a per-user profile.

Generations

aidan@archlinux ~$ guix package -1
Generation 1 Aug 22 2024 19:42:19
glibc-locales 2.35

Generation 9 Aug 23 2024 12:50:14 (current)
+ tmux 3.4

aidan@archlinux ~$ guix package -S 1
switched from generation 9 to 1
aidan@archlinux ~$ tmux --version
bash: tmux: command not found

Purely functional package management: updates are
non-destructive.

Some changes do modify a persistent environment;
to get around this, Guix uses generations to keep
old versions of the environment around.

We can roll back to any previous version of the
environment if we messed something up.

Temporary Environments

aidan@archlinux ~/programming/games$ clang --version
bash: clang: command not found
aidan@archlinux ~/programming/games$ guix shell clang-toolchain

aidan@archlinux ~/programming/games [env]$ clang --version

clang version 18.1.8

Target: x86_64-unknown-linux—gnu

Thread model: posix

InstalledDir: /gnu/store/daqllimné4ndrgqllgmv8cm6pm4sinxgzd-profile/bin
aidan@archlinux ~/programming/games [env]$

exit

aidan@archlinux ~/programming/games$ clang --version

bash: clang: command not found
aidan@archlinux ~/programming/games$

We often have programs or sets of programs that we
use together in certain contexts.

A familiar example would be the build system for a
given project: every developer working on the
project needs the same set of programs, on every
machine they work on.

Arm already uses Docker containers for this, but we
can achieve a similar effect much more simply with
guix shell.

We use guix shell to set up a temporary environment
with clang available.

When we exit the environment, it is no longer there.
This does not permanently change the environment,
SO generations are unnecessatry.

Environment Manifest

aidan@archlinux ~/programming/games$ guix shell clang-toolchain cmake \

> -—export-manifest | tee manifest.scm

;3 What follows 1is a "manifest" equivalent to the command line you gave.
;3 You can store it in a file that you may then pass to any 'guix' command
;3 that accepts a '--manifest' (or '-m') option.

(specifications->manifest

(list "clang-toolchain" '"cmake'"))
aidan@archlinux ~/programming/games$ guix shell -m manifest.scm
aidan@archlinux ~/programming/games [env]$ which cmake; which clang
/gnu/store/1190s400km688nn7cnglmybO@hclxdl5n-profile/bin/cmake
/gnu/store/1190s400km688nn7cnqlmybO@hclxdl5n-profile/bin/clang

If we want to use the same environment again,
especially if it has a lot of packages in it, which can
create a manifest file, which stores the list of
packages.

This is our first bit of Scheme-based configuration.
We could copy manifest.scm to another computer,
and use it to get the same environment there.

Manifests do the same job as Dockerfiles, and you
can actually generate Docker containers using
them.

Home Environment

(home-environment

(packages
(specifications->packages
(list "git" "emacs" "ripgrep")))

(services
(list
(service home-syncthing-service-type)

(service home-dotfiles-service-type
(home-dotfiles-configuration
(directories '("dotfiles")))))))

aidan@archlinux ~/dots$ guix home reconfigure home-configuration.scm

There are some packages that you'll always want
available. You can add them to your home
environment.

You can also add services to the home environment,
which will start up automatically when you log in.

Here I've got Syncthing, a file synchronisation
program.

You can also use Guix to manage your configuration
files.

This is useful because Guix also tracks generations
of your home configuration.

This could let you roll back a breaking change to your
configuration.

Operating System

(operating-system

(locale "en_GB.utf8")

(timezone "Europe/London") (
(keyboard-layout (keyboard-layout "gb"))

services

(append (list

(host-name '"guix-pc') (service openssh-service-type)

(kernel 1linux) (service bluetooth-service-type)
(service gnome-desktop-service-type)
(service tlp-service-type))

(users (consx* (user-account %desktop-services))

(name "aidan")

(comment "Aidan Hall")

(group "users") . .
(home-directory "/home/aidan") (bootloader (bootloader-configuration

(supplementary—groups (bootloader grub-bootloader)
" ("wheel" "netdev" "audio" "video"))) (targets (list "/dev/sdb"))
%base-user-accounts)) (keyboard-layout keyboard-layout)))

(file-systems (consx (file-system
(mount-point "/")
(device (file-system-label "guix-root"))
(type "ext4")) %base-file-systems)))

(packages (append
(specifications->packages
(list "emacs" "man- db" "gnupg" "firefox" "tmux"))
%base-packages))

aidan@gquix-pc ~/dots $ sudo guix home reconfigure home-configuration.scm

We can use Guix to specify a whole operating system
configuration.

We can specify all aspects of the system this way,
Including file systems and the desktop environment.

Guix also tracks generations of the operating system,
and will create an entry in the GRUB bootloader for
each one.

This allows you to recover the system, even if the
latest kernel can’t be loaded.

You can also use these operating system manifests
to create images that can run in a VM, and ISO files
that you can flash to a USB stick.

Closing Remarks

* A new paradigm for

software deployment

e One universal standard
that covers everyone’s

uSe Cases

HOW STANDARDS PROLIFERATE:

(SEE: AC CHARGERS, CHARACTER ENCODINGS, INSTRNT MESSAGING, ETC)

SITUATION:
THERE ARE
4 COMPETING
STANDPRDS.

7! RDICULOUS!

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. e

SITUATION:
THERE ARE
15 COMPETING
STANDPRDS.

Guix and Nix present a new paradigm for software

distribution and deployment.

They can replace a wide range of package management,

system configuration, and containerisation tools that are

in use today.

Whether you want to create a consistent development

environment for a project, configure the OS on you PC, or

deploy the same setup to every computer on a network,

Guix and Nix can handle it.

Finally, both, though Nix especially, have the potential to

become a universal standard that covers everyone’s use

cases.

Image Sources

* https://github.com/NixOS/nixos-artwork/blob/master/log
0/nix0s.svg

- Tim Cuthbertson

* http://git.savannah.gnu.org/cgit/guix/guix-artwork.git -

Luis Felipe Lopez Acevedo

* https://xkcd.com/927/

Any Questions?

Nix > Guix if you don’t care about software freedom
or Lisp.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

