

Reproducible System Configuration
with Nix and Guix

Aidan Hall - 27/08/2024

About Me

● Working in CE – GPU Software

● Studying Computer Science at Warwick

● Purely functional

package manager

● Bespoke language

● No dependency hell

● Based on Nix

● A GNU project

● Scheme (Lisp)

Package Management

Generations

Temporary Environments

Environment Manifest

Home Environment

Operating System

Closing Remarks
● A new paradigm for

software deployment

● One universal standard

that covers everyone’s

use cases

● https://github.com/NixOS/nixos-artwork/blob/master/log
o/nixos.svg

 - Tim Cuthbertson

● http://git.savannah.gnu.org/cgit/guix/guix-artwork.git -

Luis Felipe López Acevedo

● https://xkcd.com/927/

Image Sources

https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
http://git.savannah.gnu.org/cgit/guix/guix-artwork.git
https://xkcd.com/927/
https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
https://github.com/NixOS/nixos-artwork/blob/master/logo/nixos.svg
http://git.savannah.gnu.org/cgit/guix/guix-artwork.git
https://xkcd.com/927/

Any Questions?

Reproducible System Configuration
with Nix and Guix

Aidan Hall - 27/08/2024

● Purely functional

package manager

● Bespoke language

● No dependency hell

Purely functional: Package installations don’t have
side-effects on other parts of the environment.

Nix expressions are used to specify the configuration
options and dependencies for each package.

Every version of every package is handled in
isolation: you can have multiple versions of the
same package installed at the same time, if
different packages depend on different ones.

● Based on Nix

● A GNU project

● Scheme (Lisp)

A lot of directly correspondent functionality.

Focus on preserving the user’s freedom: all free
software.

Not just configured, but mostly written in Scheme.

I’ll focus on Guix because it’s the one I’m more
familiar with, but Nix can do pretty much everything
you’ll see in this talk.

The package description languages aren’t limited to
individual package management.

We can also use them to define reproducible
configurations for everything from software
development environments to the entire operating
system!

Lets explore how they work in more detail.

Package Management

This feels familiar.

Guix can be installed within another distribution, like
flatpak.

I didn’t need to install as root: packages are installed
in a per-user profile.

Generations

Purely functional package management: updates are
non-destructive.

Some changes do modify a persistent environment;
to get around this, Guix uses generations to keep
old versions of the environment around.

We can roll back to any previous version of the
environment if we messed something up.

Temporary Environments

We often have programs or sets of programs that we
use together in certain contexts.

A familiar example would be the build system for a
given project: every developer working on the
project needs the same set of programs, on every
machine they work on.

Arm already uses Docker containers for this, but we
can achieve a similar effect much more simply with
guix shell.

We use guix shell to set up a temporary environment
with clang available.

When we exit the environment, it is no longer there.
This does not permanently change the environment,

so generations are unnecessary.

Environment Manifest

If we want to use the same environment again,
especially if it has a lot of packages in it, which can
create a manifest file, which stores the list of
packages.

This is our first bit of Scheme-based configuration.
We could copy manifest.scm to another computer,

and use it to get the same environment there.

Manifests do the same job as Dockerfiles, and you
can actually generate Docker containers using
them.

Home Environment

There are some packages that you’ll always want
available. You can add them to your home
environment.

You can also add services to the home environment,
which will start up automatically when you log in.

Here I’ve got Syncthing, a file synchronisation
program.

You can also use Guix to manage your configuration
files.

This is useful because Guix also tracks generations
of your home configuration.

This could let you roll back a breaking change to your
 configuration.

Operating System

We can use Guix to specify a whole operating system
configuration.

We can specify all aspects of the system this way,
including file systems and the desktop environment.

Guix also tracks generations of the operating system,
and will create an entry in the GRUB bootloader for
each one.

This allows you to recover the system, even if the
latest kernel can’t be loaded.

You can also use these operating system manifests
to create images that can run in a VM, and ISO files
that you can flash to a USB stick.

Guix and Nix present a new paradigm for software

distribution and deployment.

They can replace a wide range of package management,

system configuration, and containerisation tools that are

in use today.

Whether you want to create a consistent development

environment for a project, configure the OS on you PC, or

deploy the same setup to every computer on a network,

Guix and Nix can handle it.

Finally, both, though Nix especially, have the potential to

become a universal standard that covers everyone’s use

cases.

Closing Remarks
● A new paradigm for

software deployment

● One universal standard

that covers everyone’s

use cases

● https://github.com/NixOS/nixos-artwork/blob/master/log
o/nixos.svg

 - Tim Cuthbertson

● http://git.savannah.gnu.org/cgit/guix/guix-artwork.git -

Luis Felipe López Acevedo

● https://xkcd.com/927/

Image Sources

Any Questions?

Nix > Guix if you don’t care about software freedom
or Lisp.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

