Why does English-based, ‘typewritten’ code
remain dominant, and what problems does it
present?

Aidan Hall

12th May 2022

I declare that the work presented in this essay is my own and that it has
not been submitted for assessment on any other module.

Abstract

All popular, modern programming languages are based on plain,
ASCII text with English identifiers. The style is archaic, making code
harder to read, especially for non-native English speakers. It developed
within the technical limitations of typewriters, but has persisted due to
language designers only making improvements incrementally, and de-
pendence on existing tools and libraries. In this article, I propose ways
to improve programming languages, including Unicode operators and
identifiers based on non-English natural languages. I also discuss the
virtues of programming paradigms other than imperative; I consider
functional and symbolic (for their reduced use of English identifiers),
as well as literate programming, which shifts the focus of program-
ming away from computer execution towards communication between
humans. I then discuss the potential practice of using multiple nota-
tions in unison, in a form of ‘heterogeneous programming’. None of
the ideas I discuss can see quick adoption, but can be gradually imple-
mented over time as new languages and developments arise, with the
ultimate goals of making programming more accessible and expressive.

1 Introduction

Today, the dominating standard form for computer programming languages
is ASCII text (Stack Overflow). I will refer to it as typewritten code
(Arawjo , p. 6). This ubiquitous notation restricts innovation in the
field of programming language design (Iverson , § 5.4). It also presents
additional barriers to non-native English speakers due to the use of English-
based identifiers (e.g. for variables and functions) (Guo , D 2).

In his retrospective analysis of early ‘visions’ of programming notation,
Arawjo describes how FORTRAN, one of the earliest foundational program-
ming languages, developed. He says that it wasn’t ‘inevitable’; instead, it
was the product of “incremental improvements to [the programmers’| inter-
actions with computers”, within the constraints of the typewriter keyboards
the designers used (Arawjo , D- 8).

The virtually universal adoption of typewritten code ensures that it will
remain dominant indefinitely. Legacy code maintenance keeps the same lan-
guages in use years after they would have otherwise lost relevance (Fleishman

). Additionally, even when developing new programs, programmers are
almost certain to rely on software libraries created in a typewritten language;
although it is possible to make procedure calls between languages, doing so
requires some commonality of form to construct argument lists and make
said calls.

Beyond the code itself, many of the common software tools used in aid of
software development work almost exclusively with typewritten text; code
editors and version control systems (Git) are among the most notable of
these.

On top of all this, there is the community of programmers who have
worked with typewritten code for years or even decades, gaining irreplacable
familiarity with the associated coding environment.

Iverson warned of an ‘unfortunate circularity of design’ (Iverson ,
§ 5.4) of programming languages and hardware, where early preoccupations
with efficient performance informed the design of early programming lan-
guages, which then went on to inform the design of later computers, and so
later programming languages.

In 2022, Python and JavaScript are the most popular programming lan-
guages (Stack Overflow). These indicate that the persistence of type-
written code is no longer based on a continued obsession with performance,
since they prioritise ease of use over efficiency. Instead, it is due to the legacy
of older languages and programming environments. As a result, I contend
that we are ready for a shift towards even more easily-useable notations.

In this essay, I will consider ways for programming methodologies and
notations to improve, both to make programming more accessible to non-
native English speakers, and to improve their effectiveness as tools of thought
and communication.

2 Unicode Operators

Despite the fact that Unicode now supports all of the major mathemat-
ical symbols that programming notation previously needed to approximate,
(<, A, =), all major programming languages remain predominantly stuck
with ASCII identifiers and operators (<=, &&, ->) (Stack Overflow).
For older languages, this is unavoidable, due to the need for backwards-
compatibility, but even newer languages like Rust retain these conventions.

Code ligatures visually replace some of the more obscure ASCII nota-
tions with their Unicode counterparts. One of their primary purposes is to
make ASCII-based operators more readable (Fira Code), so there are evid-
ently programmers who desire Unicode operators. Unfortunately, hiding the
ASCII operators only increases confusion for the uninitiated.

Modern programming languages such as Python and Haskell allow the
creation of Unicode identifiers. The Julia language (Ekre et al.) sup-
ports both styles, and the APL language (Iverson) is predominantly
composed of non-ASCII symbols. There is evidently no technical or theor-
etical barrier to implementing them into languages. Instead, the problem is
the practical matter of inputting the characters.

Since old typewriter keyboards only had keys for a tiny number of maths
symbols, the designers of early languages had to create the ASCII imitations
for the excluded ones (Arawjo , p- 6-7). Newer keyboards then only
needed to be capable of inputting the same ASCII characters to support the
existing languages, perpetuating the prior limitations. This is a case of the
‘unfortunate circularity of design’ referred to by Iverson (see introduction).

The first and most obvious solution is a keyboard which has more symbols
on, such as the APL keyboard [image|. This is not a viable approach with
respect to maximising adoption, since not all programmers would be willing
or able to replace their hardware.

A more plausible alternative would be support within the text editor
to input these symbols. For example, the TEX input methods in Emacs
(Emacs28, § 22.3) and the Julia REPL (Julia, § Unicode Input) allows the
user to input TEX macros, which are then replaced with the corresponding
Unicode symbol (e.g. \le — <). Unfortunately, any such ‘macro’ system

would inevitably add complexity, meaning the additional symbols would still
be harder (and crucially slower) to input than ASCII.

3 Multi-Lingual Identifiers

Guo (, D. 2) discusses how English-based identifiers for logic, functions
and variables can present serious obstacles to non-native English speakers.
This applies not just to reading other people’s code, but also to creating
semantically appropriate names themselves (, p. 6) (Chistyakov).

One potential solution is simply creating programming languages with
identifiers based on natural languages other than English. Whilst program-
ming with one’s native language is naturally easier for learners (Guo)
p. 2), I don’t see this as a good solution to the problem of communication
between programmers. The issue is that code is inextricably linked to a
single language in the first place; English is the standard predominantly for
historical reasons.

A more promising approach would be ‘multi-lingual’ programming lan-
guages, which could support identifiers in multiple natural languages. Guo

() refers to these as ‘bilingual labels’.
The first method was allowing others to create variants of the same lan-
guage (Wijngaarden et al. , § 0.1) with non-English identifiers. In this

case, there will effectively just be multiple incompatible languages, with the
same result as before. This technique, therefore, would be of limited value in
aiding communication between programmers with different native tongues.

A more advanced method Guo mentions is block-label localisation in
Scratch (Guo , P- 2). The principle is to have an underlying repres-
entation for what a given object is, then display the appropriate localised
label within the editor. While this does liberate the code somewhat from
any given natural language, the method has other problems:

e Every new construct would need localised identifiers in all supported
languages, making the process of adding new ones slower.

e As Guo discusses later on (, p. 6), there may not be direct 1:1
translations for certain labels.

e In the case of Scratch, user-created identifiers (for lists, variables and
custom blocks) are still stuck in one language, ignoring the localisation
system entirely.

e This runs counter to the concept of ‘plain’ text, wherein a displayed
character or word directly corresponds to the underlying representa-
tion. Consequently, it would be challenging to implemented into con-
ventional typewritten languages.

The flaws of these techniques show that multi-lingual programming is
not a problem we have a good solution for yet, especially within the domain
of typewritten text.

4 Alternative Typewritten Paradigms

Acknowledging the dominance of the typewritten, we should consider ways
to make this family of programming languages more accessible to non-native
English speakers. Following the principle of ‘universal design’ referred to
by Guo (, p- 10), doing so could be beneficial for the programming
community at large.

4.1 Functional

Using the functional programming paradigm directly reduces the number of
identifiers the programmer needs to create, in comparison to imperative code
(Chistyakov). In functional languages, programmers build up complex
behaviour through function composition, with the need for local ‘state’ vari-
ables being lower than in imperative languages. The programmer then often
only needs to create identifiers for the function and its parameters, with
point-free programming techniques reducing the need even for parameter
names.

Point-free programming involves making use of features in certain pro-
gramming languages to define a function (usually a composition: f(g(x)))
without explicitly referring to its parameters. For example, this Haskell
function converts a String to an array of upper-case words:

import Data.Char (toUpper)
uppercaseWords :: String -> [String]
uppercaseWords = words . map toUpper

4.2 Symbolic

Taking the approach of function composition to the extreme brings us to
APL (Iverson), which is so terse that the implementation for complex
function compositions such as matrix product is just a few characters (+.x).

At that point, a meaningful identifier would be longer than the implement-
ation itself, so APL programmers form collections of ‘idioms’: short code
snippets for use in one’s own programs (LearnAPL: TL;DR).

Of course, this only makes sense up to a certain point of complexity,
and Iverson himself refers to the power of ‘Subordination of Detail’ (brevity,
including use of named abstractions) in writing code (Iverson: § 1.3).

Furthermore, APL only levels the playing field of accessibility insofar as
it makes code just as hard to read for (uninitiated) native English speakers
as it is for others, by stripping away the associations with natural language,
since it is symbolic. Iverson describes APL as a (universal, executable) math-
ematical notation (Iverson), and these tend to be more language-agnostic.

Given only 0.65% of respondents to the Stack Overflow developer sur-
vey (Stack Overflow) reported using APL, it evidently hasn’t had a
significant long-term impact on the programming landscape.

4.3 Literate

An approach which could make code easier to understand for everyone, not
just non-native English speakers, is adoption of a literate programming style
(Knuth). With literate programming, the main focus is clear commu-
nication (to another person) of the purpose and design of a program, as
opposed to creating a working product by any means. The concrete im-
plementation in Knuth’s paper involves defining short blocks of code with
natural-language identifiers, interspersed with text that documents not just
what the code does, but also how and why. The programmer can then ref-
erence these code blocks using the natural-language identifiers similarly to
procedure calls. The technique is similar to the combined use of mathemat-
ical notation and natural language in academic maths'.

The natural-language code block identifiers are of interest in relation
to English accessibility. Guo’s survey revealed a desire for ‘in-line diction-
aries’, or the option to translate identifiers within the code editor (Guo

, p- 8). While attempting to do this with ‘normal’ code identifiers
could prove challenging, computers can translate natural language mod-
erately well already. Having (sufficiently accurate) translations provided
automatically mitigates most of the issues with multi-lingual identifiers (see
above). Natural-language identifiers are also inherently easier to understand,
in comparison to cryptic abbreviations (, D- 2).

' consider Iverson’s paper on APL (Iverson) to be a close approximation of literate
programming, and Knuth lists APL as an alternative language for his WEB system.

A compelling advantage of this style of documentation over simple com-
ments is that the natural-language description is the identifier, and is con-
sequently at less risk of losing its relevance in later versions of the code. Of
course, variables and functions within the program code itself would still
have intrinsic textual names (almost certainly in English), but a literate
style could also encourage the programmer to explain their use of a less-
than-obvious name (or to correct unjustifiable ones).

One could point out that potentially verbose in-line documentation of
a program could make it harder for non-natives to read. However, since
most implementations of literate programming use some form of markup for
the written explanation, this could easily include diagrams and images that
illustrate features of the program more clearly than text. This is powerful,
since 23% of the learners in Guo’s survey specifically expressed a desire for
‘More Visuals and Multimedia’ in educational materials (Guo ,D-7), P
7), owing in part to their language-independence.

One notable inclusion would be block or flow diagrams, which early pro-
grammers considered an essential part of the programming process (Arawjo

, D- 5). This ties into the idea that literate programming is an effort (or
at least an opportunity) to document the development process of a program,
not just its final behaviour.

Given the focus on communication that literate programming entails, I
consider it well-suited (if not best-suited) to creating code examples. Since
the style allows the programmer to break code up, beyond even sensible
procedural abstraction, they can explain and illustrate each part to whatever
extent is necessary right alongside the code itself. Each block of code and its
accompanying explanation can be short, making them easier to comprehend
(especially for non-native English speakers!). The focus on the development
process is valuable here as well, since part of the purpose of examples is to
teach others how to create similar code for themselves.

Furthermore, since such examples would need to be ‘tangled’ into a full
working program, the author would have to make sure the example was
correct, complete and up-to-date. For example, the classic practice in edu-
cational code examples of omitting error handling and /or cleanup for brevity
(Kelly) wouldn’t be necessary, since these could be in separate literate
blocks (Knuth , p. 12).

Prominent contemporary implementations of literate programming en-
vironments include Jupyter and Emacs Org-Babel.

5 Heterogeneous Programming

The next logical step after literate programming is heterogeneous program-
ming (Arawjo , p- 9). The principle is to use multiple different notations
for programming, choosing whichever is most applicable for a given situation.
Arawjo gives the example of embedded quantum circuit diagrams within a
program which ‘are the code’, coexisting with surrounding typewritten pro-
cedure calls.

Scientific research papers could take the form of executable programs
(Lasser), with the mathematical equations themselves forming part of
the code. Lasser uses Python for its readability, but an executable mathem-
atical notation such as the one in Geogebra would be even more so, even for
more complex equations:

def quadratic(a, b, c):
det = bxb - 4xax*xc
detRootDiv = math.sqrt(det)/(2*a)
bDiv = -b/(2xa)
return [bDiv + detRootDiv, bDiv - detRootDiv]

—b+ Vb? —4ac (1)
2a

For inter-operation with equations that include non-ASCII symbols, such
as A in radioactive decay, using Unicode identifiers instead of something like
lambda would make the meaning clearer.

quadratic(a, b, c) =

6 Conclusion

Typewritten text is deeply entrenched into the practices and culture of pro-
gramming. In industrial applications, where large teams develop code iter-
atively over the course of years or decades, it is likely to persist indefinitely.
Given all the products this medium has produced, one cannot deny its ef-
fectiveness. Instead, a focus on inclusion and accessibility in the field of
Computer Science (of which programming is but a small part) should in-
form our judgements about how we design and implement programs and
programming languages.

By shifting the focus of programming from instruction and execution to
communication, we can bring an international community of computational
thinkers closer together, and create better, more understandable software. In
treating programming as a medium of thought, we can consider techniques

https://geogebra.org/calculator

to make it more expressive, which can grow to gain wider adoption and
significance over time.

References

Arawjo, Ian (2020). ‘To Write Code: The Cultural Fabrication of Program-
ming Notation and Practice’. In: Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: Asso-
ciation for Computing Machinery, pp. 1-15. 1ISBN: 9781450367080. URL:
https://doi.org/10.1145/3313831.3376731.

Chistyakov, Artem (28th June 2017). The language of programming. URL:
https://temochka.com/blog/posts/2017/06/28/the-1language-of -
programming.html (visited on 04/05/2022).

Ekre, Fredrik, Kristoffer Carlsson, Milan Bouchet-Valat, Michael Hatherly,
Alex Arslan, Valentin Churavy, Tim Holy, Sacha Verweij, Morten Piibeleht,
Mohit Nain, Kiaran B Dave, Jeff Bezanson, Rafael Fourquet, Chris Foster,
Amit Murthy and Chris Rackauckas (27th Apr. 2022). Julia 1.7 Docu-
mentation. Version 1.7.2. URL: https://docs. julialang.org/en/vl/
(visited on 04/05/2022).

Fleishman, G. (Apr. 2018). [t’s COBOL all the way down. Stripe. URL:
https://increment . com/programming- languages/cobol-all-the-
way-down/ (visited on 03/05/2022).

Guo, Philip J. (2018). ‘Non-Native English Speakers Learning Computer Pro-
gramming: Barriers, Desires, and Design Opportunities’. In: Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems.
CHI ’18. Montreal QC, Canada: Association for Computing Machinery,
pp- 1-14. 1sBN: 9781450356206. DOI: 10.1145/3173574.3173970. URL:
https://doi.org/10.1145/3173574.3173970.

Iverson, Kenneth E. (Aug. 1980). ‘Notation as a Tool of Thought’. In: Com-
mun. ACM 23.8, pp. 444-465. 18SN: 0001-0782. DOT: 10 . 1145/358896 .
358899. URL: https://doi.org/10.1145/358896.358899.

Kelly, A. (9th Jan. 2019). Error handling omitted for brevity. URL: https:
//www .allankelly.net/archives/2890/error-handling-omitted-
for-brevity/ (visited on 29/04/2022).

Knuth, D. E. (Jan. 1984). ‘Literate Programming’. In: The Computer Journal
27.2, pp- 97-111. 18sN: 0010-4620. DOI: 10.1093/comjnl/27.2.97. eprint:
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/
270097 .pdf. URL: https://doi.org/10.1093/comjnl/27.2.97.

https://doi.org/10.1145/3313831.3376731
https://temochka.com/blog/posts/2017/06/28/the-language-of-programming.html
https://temochka.com/blog/posts/2017/06/28/the-language-of-programming.html
https://docs.julialang.org/en/v1/
https://increment.com/programming-languages/cobol-all-the-way-down/
https://increment.com/programming-languages/cobol-all-the-way-down/
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1145/358896.358899
https://doi.org/10.1145/358896.358899
https://doi.org/10.1145/358896.358899
https://www.allankelly.net/archives/2890/error-handling-omitted-for-brevity/
https://www.allankelly.net/archives/2890/error-handling-omitted-for-brevity/
https://www.allankelly.net/archives/2890/error-handling-omitted-for-brevity/
https://doi.org/10.1093/comjnl/27.2.97
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf
https://doi.org/10.1093/comjnl/27.2.97

Lasser, J. (19th Aug. 2020). ‘Creating an executable paper is a journey
through Open Science’. In: Communications Physics 3.1, p. 143. ISSN:
2399-3650. DOI: 10.1038/s42005-020-00403-4. URL: https://doi.
org/10.1038/s42005-020-00403-4.

Stack Overflow (15th June 2021). 2021 Developer Survey. URL: https://
insights.stackoverflow.com/survey/2021 (visited on 03/05/2022).

Wijngaarden, A. van, B.J. Mailloux, C.H.A. Koster J.E.L. Peck, L.G.T. Meer-
tens M. Sintzoff C.H. Lindsey and R.G. Fisker (Sept. 1973). Algol 68. Re-
vised Report on the Algorithmic Language. report. ALGOL 68 Revision
Committee. URL: https://web.archive.org/web/20150906170502/
http://jmvdveer.home.xs4all.nl/algol68/report.html (visited on
02/05/2022).

10

https://doi.org/10.1038/s42005-020-00403-4
https://doi.org/10.1038/s42005-020-00403-4
https://doi.org/10.1038/s42005-020-00403-4
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://web.archive.org/web/20150906170502/http://jmvdveer.home.xs4all.nl/algol68/report.html
https://web.archive.org/web/20150906170502/http://jmvdveer.home.xs4all.nl/algol68/report.html

	Introduction
	Unicode Operators
	Multi-Lingual Identifiers
	Alternative Typewritten Paradigms
	Functional
	Symbolic
	Literate

	Heterogeneous Programming
	Conclusion

